PV Fleets QA Process: Irradiance#

PV Fleets Irradiance QA Pipeline

The NREL PV Fleets Data Initiative uses PVAnalytics routines to assess the quality of systems’ PV data. In this example, the PV Fleets process for assessing the data quality of an irradiance data stream is shown. This example pipeline illustrates how several PVAnalytics functions can be used in sequence to assess the quality of an irradiance data stream.

import pandas as pd
import pathlib
from matplotlib import pyplot as plt
import pvanalytics
import pvlib
from pvanalytics.quality import data_shifts as ds
from pvanalytics.quality import gaps
from pvanalytics.quality.outliers import zscore
from pvanalytics.features.daytime import power_or_irradiance
from pvanalytics.quality.time import shifts_ruptures
from pvanalytics.features import daytime

First, we import a POA irradiance data stream from a PV installation at NREL. This data set is publicly available via the PVDAQ database in the DOE Open Energy Data Initiative (OEDI) (https://data.openei.org/submissions/4568), under system ID 15. This data is timezone-localized.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
file = pvanalytics_dir / 'data' / 'system_15_poa_irradiance.parquet'
time_series = pd.read_parquet(file)
time_series.set_index('measured_on', inplace=True)
time_series.index = pd.to_datetime(time_series.index)
time_series = time_series['poa_irradiance__484']
latitude = 39.7406
longitude = -105.1775
data_freq = '15min'
time_series = time_series.asfreq(data_freq)

First, let’s visualize the original time series as reference.

time_series.plot(title="Original Time Series")
plt.xlabel("Date")
plt.ylabel("Irradiance, W/m^2")
plt.tight_layout()
plt.show()
Original Time Series

Now, let’s run basic data checks to identify stale and abnormal/outlier data in the time series. Basic data checks include the following steps:

  1. Flatlined/stale data periods (pvanalytics.quality.gaps.stale_values_round())

  2. Negative irradiance data

  3. “Abnormal” data periods, which are defined as days with a daily minimum greater than 50 OR any data greater than 1300

  4. Outliers, which are defined as more than one 4 standard deviations away from the mean (pvanalytics.quality.outliers.zscore())

# REMOVE STALE DATA (that isn't during nighttime periods)
# Day/night mask
daytime_mask = power_or_irradiance(time_series)
# Stale data mask
stale_data_mask = gaps.stale_values_round(time_series,
                                          window=3,
                                          decimals=2)
stale_data_mask = stale_data_mask & daytime_mask

# REMOVE NEGATIVE DATA
negative_mask = (time_series < 0)

# FIND ABNORMAL PERIODS
daily_min = time_series.resample('D').min()
erroneous_mask = (daily_min > 50)
erroneous_mask = erroneous_mask.reindex(index=time_series.index,
                                        method='ffill',
                                        fill_value=False)

# Remove values greater than or equal to 1300
out_of_bounds_mask = (time_series >= 1300)

# FIND OUTLIERS (Z-SCORE FILTER)
zscore_outlier_mask = zscore(time_series,
                             zmax=4,
                             nan_policy='omit')

# Get the percentage of data flagged for each issue, so it can later be logged
pct_stale = round((len(time_series[
    stale_data_mask].dropna())/len(time_series.dropna())*100), 1)
pct_negative = round((len(time_series[
    negative_mask].dropna())/len(time_series.dropna())*100), 1)
pct_erroneous = round((len(time_series[
    erroneous_mask].dropna())/len(time_series.dropna())*100), 1)
pct_outlier = round((len(time_series[
    zscore_outlier_mask].dropna())/len(time_series.dropna())*100), 1)

# Visualize all of the time series issues (stale, abnormal, outlier, etc)
time_series.plot()
labels = ["Irradiance"]
if any(stale_data_mask):
    time_series.loc[stale_data_mask].plot(ls='', marker='o', color="green")
    labels.append("Stale")
if any(negative_mask):
    time_series.loc[negative_mask].plot(ls='', marker='o', color="orange")
    labels.append("Negative")
if any(erroneous_mask):
    time_series.loc[erroneous_mask].plot(ls='', marker='o', color="yellow")
    labels.append("Abnormal")
if any(out_of_bounds_mask):
    time_series.loc[out_of_bounds_mask].plot(ls='', marker='o', color="yellow")
    labels.append("Too High")
if any(zscore_outlier_mask):
    time_series.loc[zscore_outlier_mask].plot(
        ls='', marker='o', color="purple")
    labels.append("Outlier")
plt.legend(labels=labels)
plt.title("Time Series Labeled for Basic Issues")
plt.xlabel("Date")
plt.ylabel("Irradiance, W/m^2")
plt.tight_layout()
plt.show()
Time Series Labeled for Basic Issues

Now, let’s filter out any of the flagged data from the basic irradiance checks (stale or abnormal data). Then we can re-visualize the data post-filtering.

# Filter the time series, taking out all of the issues
issue_mask = ((~stale_data_mask) & (~negative_mask) & (~erroneous_mask) &
              (~out_of_bounds_mask) & (~zscore_outlier_mask))
time_series = time_series[issue_mask]
time_series = time_series.asfreq(data_freq)

# Visualize the time series post-filtering
time_series.plot(title="Time Series Post-Basic Data Filtering")
plt.xlabel("Date")
plt.ylabel("Irradiance, W/m^2")
plt.tight_layout()
plt.show()
Time Series Post-Basic Data Filtering

We filter the time series based on its daily completeness score. This filtering scheme requires at least 25% of data to be present for each day to be included. We further require at least 10 consecutive days meeting this 25% threshold to be included.

# Visualize daily data completeness
data_completeness_score = gaps.completeness_score(time_series)

# Visualize data completeness score as a time series.
data_completeness_score.plot()
plt.xlabel("Date")
plt.ylabel("Daily Completeness Score (Fractional)")
plt.axhline(y=0.25, color='r', linestyle='-',
            label='Daily Completeness Cutoff')
plt.legend()
plt.tight_layout()
plt.show()

# Trim the series based on daily completeness score
trim_series = pvanalytics.quality.gaps.trim_incomplete(
    time_series,
    minimum_completeness=.25,
    freq=data_freq)
first_valid_date, last_valid_date = \
    pvanalytics.quality.gaps.start_stop_dates(trim_series)
time_series = time_series[first_valid_date.tz_convert(time_series.index.tz):
                          last_valid_date.tz_convert(time_series.index.tz)]
time_series = time_series.asfreq(data_freq)
pvfleets irradiance qa

Next, we check the time series for any time shifts, which may be caused by time drift or by incorrect time zone assignment. To do this, we compare the modelled midday time for the particular system location to its measured midday time. We use pvanalytics.quality.gaps.stale_values_round()) to determine the presence of time shifts in the series.

# Get the modeled sunrise and sunset time series based on the system's
# latitude-longitude coordinates
modeled_sunrise_sunset_df = pvlib.solarposition.sun_rise_set_transit_spa(
    time_series.index, latitude, longitude)

# Calculate the midday point between sunrise and sunset for each day
# in the modeled irradiance series
modeled_midday_series = modeled_sunrise_sunset_df['sunrise'] + \
    (modeled_sunrise_sunset_df['sunset'] -
     modeled_sunrise_sunset_df['sunrise']) / 2

# Run day-night mask on the irradiance time series
daytime_mask = power_or_irradiance(time_series,
                                   freq=data_freq,
                                   low_value_threshold=.005)

# Generate the sunrise, sunset, and halfway points for the data stream
sunrise_series = daytime.get_sunrise(daytime_mask)
sunset_series = daytime.get_sunset(daytime_mask)
midday_series = sunrise_series + ((sunset_series - sunrise_series)/2)

# Convert the midday and modeled midday series to daily values
midday_series_daily, modeled_midday_series_daily = (
    midday_series.resample('D').mean(),
    modeled_midday_series.resample('D').mean())

# Set midday value series as minutes since midnight, from midday datetime
# values
midday_series_daily = (midday_series_daily.dt.hour * 60 +
                       midday_series_daily.dt.minute +
                       midday_series_daily.dt.second / 60)
modeled_midday_series_daily = \
    (modeled_midday_series_daily.dt.hour * 60 +
     modeled_midday_series_daily.dt.minute +
     modeled_midday_series_daily.dt.second / 60)

# Estimate the time shifts by comparing the modelled midday point to the
# measured midday point.
is_shifted, time_shift_series = shifts_ruptures(modeled_midday_series_daily,
                                                midday_series_daily,
                                                period_min=15,
                                                shift_min=15,
                                                zscore_cutoff=1.5)

# Create a midday difference series between modeled and measured midday, to
# visualize time shifts. First, resample each time series to daily frequency,
# and compare the data stream's daily halfway point to the modeled halfway
# point
midday_diff_series = (modeled_midday_series.resample('D').mean() -
                      midday_series.resample('D').mean()
                      ).dt.total_seconds() / 60

# Generate boolean for detected time shifts
if any(time_shift_series != 0):
    time_shifts_detected = True
else:
    time_shifts_detected = False

# Build a list of time shifts for re-indexing. We choose to use dicts.
time_shift_series.index = pd.to_datetime(
    time_shift_series.index)
changepoints = (time_shift_series != time_shift_series.shift(1))
changepoints = changepoints[changepoints].index
changepoint_amts = pd.Series(time_shift_series.loc[changepoints])
time_shift_list = list()
for idx in range(len(changepoint_amts)):
    if idx < (len(changepoint_amts) - 1):
        time_shift_list.append({"datetime_start":
                                str(changepoint_amts.index[idx]),
                                "datetime_end":
                                    str(changepoint_amts.index[idx + 1]),
                                "time_shift": changepoint_amts[idx]})
    else:
        time_shift_list.append({"datetime_start":
                                str(changepoint_amts.index[idx]),
                                "datetime_end":
                                    str(time_shift_series.index.max()),
                                "time_shift": changepoint_amts[idx]})

# Correct any time shifts in the time series
new_index = pd.Series(time_series.index, index=time_series.index)
for i in time_shift_list:
    new_index[(time_series.index >= pd.to_datetime(i['datetime_start'])) &
              (time_series.index < pd.to_datetime(i['datetime_end']))] = \
        time_series.index + pd.Timedelta(minutes=i['time_shift'])
time_series.index = new_index

# Remove duplicated indices and sort the time series (just in case)
time_series = time_series[~time_series.index.duplicated(
    keep='first')].sort_index()

# Plot the difference between measured and modeled midday, as well as the
# CPD-estimated time shift series.
midday_diff_series.plot()
time_shift_series.plot()
plt.title("Midday Difference Time Shift Series")
plt.xlabel("Date")
plt.ylabel("Midday Difference (Modeled-Measured), Minutes")
plt.tight_layout()
plt.show()

# Plot the heatmap of the irradiance time series
plt.figure()
# Get time of day from the associated datetime column
time_of_day = pd.Series(time_series.index.hour +
                        time_series.index.minute/60,
                        index=time_series.index)
# Pivot the dataframe
dataframe = pd.DataFrame(pd.concat([time_series, time_of_day], axis=1))
dataframe.columns = ["values", 'time_of_day']
dataframe = dataframe.dropna()
dataframe_pivoted = dataframe.pivot_table(index='time_of_day',
                                          columns=dataframe.index.date,
                                          values="values")
plt.pcolormesh(dataframe_pivoted.columns,
               dataframe_pivoted.index,
               dataframe_pivoted,
               shading='auto')
plt.ylabel('Time of day [0-24]')
plt.xlabel('Date')
plt.xticks(rotation=60)
plt.title('Post-Correction Heatmap, Time of Day')
plt.colorbar()
plt.tight_layout()
plt.show()
  • Midday Difference Time Shift Series
  • Post-Correction Heatmap, Time of Day

Next, we check the time series for any abrupt data shifts. We take the longest continuous part of the time series that is free of data shifts. We use pvanalytics.quality.data_shifts.detect_data_shifts() to detect data shifts in the time series.

# Resample the time series to daily mean
time_series_daily = time_series.resample('D').mean()
data_shift_start_date, data_shift_end_date = \
    ds.get_longest_shift_segment_dates(time_series_daily)
data_shift_period_length = (data_shift_end_date - data_shift_start_date).days

# Get the number of shift dates
data_shift_mask = ds.detect_data_shifts(time_series_daily)
# Get the shift dates
shift_dates = list(time_series_daily[data_shift_mask].index)
if len(shift_dates) > 0:
    shift_found = True
else:
    shift_found = False

# Visualize the time shifts for the daily time series
print("Shift Found:", shift_found)
edges = [time_series_daily.index[0]] + \
    shift_dates + [time_series_daily.index[-1]]
fig, ax = plt.subplots()
for (st, ed) in zip(edges[:-1], edges[1:]):
    ax.plot(time_series_daily.loc[st:ed])
plt.title("Daily Time Series Labeled for Data Shifts")
plt.xlabel("Date")
plt.ylabel("Mean Daily Irradiance (W/m^2)")
plt.tight_layout()
plt.show()
Daily Time Series Labeled for Data Shifts
Shift Found: False

We filter the time series to only include the longest shift-free period.

Display the final irradiance time series, post-QA filtering.

time_series.plot(title="Final Filtered Time Series")
plt.xlabel("Date")
plt.ylabel("Irradiance (W/m^2)")
plt.tight_layout()
plt.show()
Final Filtered Time Series

Generate a dictionary output for the QA assessment of this data stream, including the percent stale and erroneous data detected, any shift dates, and any detected time shifts.

qa_check_dict = {"original_time_zone_offset": time_series.index.tz,
                 "pct_stale": pct_stale,
                 "pct_negative": pct_negative,
                 "pct_erroneous": pct_erroneous,
                 "pct_outlier": pct_outlier,
                 "time_shifts_detected": time_shifts_detected,
                 "time_shift_list": time_shift_list,
                 "data_shifts": shift_found,
                 "shift_dates": shift_dates}

print("QA Results:")
print(qa_check_dict)
QA Results:
{'original_time_zone_offset': pytz.FixedOffset(-420), 'pct_stale': 0.1, 'pct_negative': 0.0, 'pct_erroneous': 1.3, 'pct_outlier': 1.2, 'time_shifts_detected': False, 'time_shift_list': [{'datetime_start': '2019-03-20 00:00:00-07:00', 'datetime_end': '2023-10-21 00:00:00-07:00', 'time_shift': 0.0}], 'data_shifts': False, 'shift_dates': []}

Total running time of the script: (0 minutes 33.078 seconds)

Gallery generated by Sphinx-Gallery