PVAnalytics

pvlib

Aug 18, 2022

CONTENTS:

1 Library Overview 3
2 Dependencies 5
3 Contents 7
3.1 APIReference e e 7
3.1 Quality ..o e e e e e e e e e e e 7

312 Features e e 28

313 0 System ... e e e e e e 36

314 0 Metrics . . . o o e e e e e e e e e e 40

32 Example Gallery e 41
3.2.1 Z-Score Outlier Detection e 41

3.2.2 Tukey Outlier Detection i e e e e e e e 43

3.2.3 Hampel Outlier Detection o 0 o e e e 45

3.24 Flag Sunny Days for a Fixed-Tilt System 47

3.2.5 Flag Sunny Days for a Tracking System 49

32.6 Clear-Sky Detection i i i e e e e 50

3.277 Interpolated Data Periods e e e 52

3.2.8 Clearsky Limits for Daily Insolation 54

3.2.9 Data Shift Detection & Filtering o 56

3.2.10 Clearsky Limits for Irradiance Data L. 60

32.11 StaleDataPeriods 62

3.2.12 Clipping Detection o v v i e e e e e e e e e e e e e 65

3.2.13 QCrad Limits for Irradiance Data, 68

3.2.14 Missing Data Periods L e 71

3.2.15 QCrad Consistency for Irradiance Data 75

3.2.16 Day-Night Masking L e 77

33 Release NOteS v v v v i i e e e e e 81
33.1 0.1.2(August 18,2022) e e e e e 81

3.3.2 0.1.1 (February 18,2022) e 82

3.3.3 0.1.0 (November 20, 2020) o i i i e e e e e e e e e e e e e e 83

4 Indices and tables 85
Index 87

PVAnalytics

PVAnalytics is a python library that supports analytics for PV systems. It provides functions for quality control, filtering,
and feature labeling and other tools supporting the analysis of PV system-level data. It can be used as a standalone
analysis package and as a data cleaning “front end” for other PV analysis packages.

PVAnalytics is free and open source under a permissive license. The source code for PVAnalytics is hosted on github.

CONTENTS: 1

https://github.com/pvlib/pvanalytics/blob/master/LICENSE
https://github.com/pvlib/pvanalytics

PVAnalytics

2 CONTENTS:

CHAPTER
ONE

LIBRARY OVERVIEW

The functions provided by PVAnalytics are organized in submodules based on their anticipated use. The list below
provides a general overview; however, not all modules have functions at this time, see the API reference for current
library status.

* quality contains submodules for different kinds of data quality checks.

quality.data_shifts contains quality checks for detecting and isolating data shifts in PV time series
data.

quality.irradiance contains quality checks for irradiance measurements.

quality.weather contains quality checks for weather data (e.g. tests for physically plausible values of
temperature, wind speed, humidity).

quality.outliers contains functions for identifying outliers.

quality.gaps contains functions for identifying gaps in the data (i.e. missing values, stuck values, and
interpolation).

quality.time quality checks related to time (e.g. timestamp spacing, time shifts).

quality.util general purpose quality functions (e.g. simple range checks).

» features contains submodules with different methods for identifying and labeling salient features.

features.clipping functions for labeling inverter clipping.
features.clearsky functions for identifying periods of clear sky conditions.
features.daytime functions for identifying periods of day and night.

features.orientation functions for identifying orientation-related features in the data (e.g. days where
the data looks like there is a functioning tracker). These functions are distinct from the functions in the
system module in that we are identifying features of data rather than properties of the system that produced
the data.

features.shading functions for identifying shadows.

* system identification of PV system characteristics from data (e.g. nameplate power, tilt, azimuth)

* metrics contains functions for computing PV system-level metrics (e.g. performance ratio)

PVAnalytics

4 Chapter 1. Library Overview

CHAPTER
TWO

DEPENDENCIES

This project follows the guidelines laid out in NEP-29. It supports:

* All minor versions of Python released 42 months prior to the project, and at minimum the two latest minor
versions.

* All minor versions of numpy released in the 24 months prior to the project, and at minimum the last three minor
versions

* The latest release of pvlib.

Additionally, PVAnalytics relies on several other packages in the open source scientific python ecosystem. For details
on dependencies and versions, see our setup.py.

https://numpy.org/neps/nep-0029-deprecation_policy.html
https://pvlib-python.readthedocs.io
https://github.com/pvlib/pvanalytics/blob/master/setup.py

PVAnalytics

6 Chapter 2. Dependencies

CHAPTER
THREE

CONTENTS

3.1 API Reference

3.1.1 Quality

Data Shifts

Functions for identifying shifts in data values in time series and for identifying periods with data shifts. For functions
that identify shifts in time, see quality.time

quality.data_shifts. Detect data shifts in a time series of daily values.
detect_data_shifts(series)

quality.data_shifts. Return the start and end dates of the longest serially com-
get_longest_shift_segment_dates(series) plete time series segment.

pvanalytics.quality.data_shifts.detect_data_shifts

pvanalytics.quality.data_shifts.detect_data_shifts(series, filtering=True, use_default_models=True,
method=None, cost=None, penalty=40)
Detect data shifts in a time series of daily values.

Warning: If the passed time series is less than 2 years in length, it will not be corrected for seasonality.
Data shift detection will be run on the min-max normalized time series with no seasonality correction.

Parameters

* series (Pandas series with datetime index.) — Time series of daily PV data val-
ues, which can include irradiance and power data.

e filtering (Boolean, default True.)— Whether or not to filter out outliers and stale
data from the time series. If True, then this data is filtered out before running the data shift
detection sequence. If False, this data is not filtered out. Default set to True.

* use_default_models (Boolean, default True) — If True, then default change point
detection search parameters are used. For time series shorter than 2 years in length, the search
function is rpt. Window with model="rbf’, width=>50 and penalty=30. For time series 2 years
or longer in length, the search function is rpt. BottomUp with model="rbf” and penalty=40.

PVAnalytics

method (ruptures search method instance or None, default None.) — Rup-
tures search method instance. See https://centre-borelli.github.io/ruptures-docs/user-guide/.

cost (str or None, default None)- Cost function passed to the ruptures changepoint
search instance. See https://centre-borelli.github.io/ruptures-docs/user-guide/

penalty (int, default 40)- Penalty value passed to the ruptures changepoint detection
method. Default set to 40.

Returns Series of boolean values with the input Series’ datetime index, where detected changepoints
are labeled as True, and all other values are labeled as False.

Return type Pandas Series

References

Examples using pvanalytics.quality.data_shifts.detect_data_shifts

* Data Shift Detection & Filtering

pvanalytics.quality.data_shifts.get_longest_shift_segment_dates

pvanalytics.quality.data_shifts.get_longest_shift_segment_dates(series, filtering=True,

use_default_models=True,
method=None, cost=None,
penalty=40,
buffer_day_length=7)

Return the start and end dates of the longest serially complete time series segment.

During this process, data shift detection is performed, and the longest time series segment between changepoints
is identified, and the start and end dates of that segment are returned, with a settable buffer period added to the
start date and subtracted from the end date, to allow for the segment to stabilize (this helps if the changepoint is

detected a few days early or a few days late, compared to the actual shift date).

Parameters

series (Pandas series with datetime index.) — Daily time series of a PV data
stream, which can include irradiance and power data streams. This series represents the
summed daily values of the particular data stream.

filtering (Boolean, default True.)— Whether or not to filter out outliers and stale
data from the time series. If True, then this data is filtered out before running the data shift
detection sequence. If False, this data is not filtered out. Default set to True.

use_default_models (Boolean, default True) — If True, then default change point
detection search parameters are used. For time series shorter than 2 years in length, the search
function is rpt. Window with model="rbf’, width=50 and penalty=30. For time series 2 years
or longer in length, the search function is rpt. BottomUp with model="rbf” and penalty=40.

method (ruptures search method instance or None, default None.) — Rup-
tures search method instance. See https://centre-borelli.github.io/ruptures-docs/user-guide/.

cost (str or None, default None)- Cost function passed to the ruptures changepoint
search instance. See https://centre-borelli.github.io/ruptures-docs/user-guide/

penalty (int, default 40)-Penalty value passed to the ruptures changepoint detection
method. Default set to 40.

Chapter 3. Contents

https://docs.python.org/3/library/constants.html#None
https://centre-borelli.github.io/ruptures-docs/user-guide/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://centre-borelli.github.io/ruptures-docs/user-guide/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://centre-borelli.github.io/ruptures-docs/user-guide/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://centre-borelli.github.io/ruptures-docs/user-guide/
https://docs.python.org/3/library/functions.html#int

PVAnalytics

» buffer_day_length (int, default 7) — Number of days to add to the start date and
subtract from the end date of the longest detected data shift-free period. This buffer period
helps to filter out any data that doesn’t fit within the current data segment. This issue occurs
when the changepoint is detected a few days early or late compared to the actual data shift
date.

Returns

* start_date (Pandas datetime) — Start date of the longest continuous time series segment that
is free of data shifts.

* end_date (Pandas datetime) — End date of the longest continuous time series segment that
is free of data shifts.

References
Examples using pvanalytics.quality.data_shifts.get_longest_shift_segment_dates
* Data Shift Detection & Filtering

Irradiance

The check_*_limits_gcrad functions use the QCRad algorithm' to identify irradiance measurements that are be-
yond physical limits.

quality.irradiance. Test for physical limits on GHI using the QCRad criteria.
check_ghi_limits_qcrad(...)
quality.irradiance. Test for physical limits on DHI using the QCRad criteria.
check_dhi_limits_qcrad(...)
quality.irradiance. Test for physical limits on DNI using the QCRad criteria.

check dni_limits_qcrad(...)

pvanalytics.quality.irradiance.check_ghi_limits_qcrad

pvanalytics.quality.irradiance.check_ghi_limits_qcrad(ghi, solar_zenith, dni_extra, limits=None)
Test for physical limits on GHI using the QCRad criteria.

Test is applied to each GHI value. A GHI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

ub = min + mult x dni_extra cos(solar_zenith)®™?

Parameters
* ghi (Series) — Global horizontal irradiance in W/m?
* solar_zenith (Series) — Solar zenith angle in degrees
* dni_extra (Series) — Extraterrestrial normal irradiance in W/m?

e limits (dict, default QCRAD_LIMITS) — Must have keys ‘ghi_ub’ and ‘ghi_Ib’. For
‘ghi_ub’ value is a dict with keys { ‘mult’, ‘exp’, ‘min’} and float values. For ‘ghi_Ib’ value
is a float.

! C.N.Longand Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

3.1. API Reference 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PVAnalytics

Returns True where value passes limits test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.irradiance.check_dhi_limits_qcrad

pvanalytics.quality.irradiance.check_dhi_limits_qcrad(dhi, solar_zenith, dni_extra, limits=None)
Test for physical limits on DHI using the QCRad criteria.

Test is applied to each DHI value. A DHI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

ub = min + mult x dni_extra x cos(solar_zenith)“?

Parameters
« dhi (Series) - Diffuse horizontal irradiance in W /m?
* solar_zenith (Series) — Solar zenith angle in degrees
* dni_extra (Series) — Extraterrestrial normal irradiance in W/m?

e limits (dict, default QCRAD_LIMITS) — Must have keys ‘dhi_ub’ and ‘dhi_Ib’. For
‘dhi_ub’ value is a dict with keys { ‘mult’, ‘exp’, ‘min’} and float values. For ‘dhi_Ib’ value
is a float.

Returns True where value passes limit test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.irradiance.check_dni_limits_qcrad

pvanalytics.quality.irradiance.check_dni_limits_qcrad(dni, solar_zenith, dni_extra, limits=None)
Test for physical limits on DNI using the QCRad criteria.

Test is applied to each DNI value. A DNI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

ub = min + mult x dni_extra x cos(solar_zenith)“?

Parameters
* dni (Series) — Direct normal irradiance in W/m?

» solar_zenith (Series) — Solar zenith angle in degrees

10 Chapter 3. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

* dni_extra (Series) — Extraterrestrial normal irradiance in W/m?

e limits (dict, default QCRAD_LIMITS) — Must have keys ‘dni_ub’ and ‘dni_Ib’. For
‘dni_ub’ value is a dict with keys { ‘mult’, ‘exp’, ‘min’} and float values. For ‘dni_Ib’ value
is a float.

Returns True where value passes limit test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

All three checks can be combined into a single function call.

quality.irradiance. Test for physical limits on GHI, DHI or DNI using the
check_irradiance_limits_qcrad(...) QCRad criteria.

pvanalytics.quality.irradiance.check_irradiance_limits_qcrad

pvanalytics.quality.irradiance.check_irradiance_limits_qcrad(solar_zenith, dni_extra, ghi=None,
dhi=None, dni=None, limits=None)
Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Criteria from' are used to determine physically plausible lower and upper bounds. Each value is tested and a
value passes if value > lower bound and value < upper bound. Lower bounds are constant for all tests. Upper
bounds are calculated as

ub = min + mult x dni_extra cos(solar_zenith)®™?

Note: If any of ghi, dhi, or dni are None, the corresponding element of the returned tuple will also be None.

Parameters
* solar_zenith (Series) — Solar zenith angle in degrees
* dni_extra (Series) — Extraterrestrial normal irradiance in W/m?
* ghi (Series or None, default None) - Global horizontal irradiance in W/ m?
+ dhi (Series or None, default None)— Diffuse horizontal irradiance in W/m?
* dni (Series or None, default None)— Direct normal irradiance in W/m?

e limits (dict, default QCRAD_LIMITS) - forkeys ‘ghi_ub’, ‘dhi_ub’, ‘dni_ub’, value is
a dict with keys { ‘mult’, ‘exp’, ‘min’} and float values. For keys ‘ghi_lb’, ‘dhi_Ib’, ‘dni_lb’,
value is a float.

Returns

* ghi_limit_flag (Series) — True for each value that is physically possible. None if ghi is None.

! C.N.Longand Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

3.1. API Reference 11

https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

PVAnalytics

* dhi_limit_flag (Series) — True for each value that is physically possible. None if dni is None.

* dni_limit_flag (Series) — True for each value that is physically possible. None if dni is None.

Notes
Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the

top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References
Examples using pvanalytics.quality.irradiance.check_irradiance_limits_qgcrad

* OCrad Limits for Irradiance Data

Irradiance measurements can also be checked for consistency.

quality.irradiance. Check consistency of GHI, DHI and DNI using QCRad
check_irradiance_consistency_qcrad(...) criteria.

pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad

pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad(solar_zenith, ghi, dhi, dni,
param=None)
Check consistency of GHI, DHI and DNI using QCRad criteria.

Uses criteria given in' to validate the ratio of irradiance components.

Warning: Not valid for night time. While you can pass data from night time to this function, be aware that
the truth values returned for that data will not be valid.

Parameters
» solar_zenith (Series) — Solar zenith angle in degrees
» ghi (Series) — Global horizontal irradiance in W/m?
+ dhi (Series) — Diffuse horizontal irradiance in W /m?
* dni (Series) — Direct normal irradiance in W/m?

e param (dict) — keys are ‘ghi_ratio’ and ‘dhi_ratio’. For each key, value is a dict with
keys ‘high_zenith’ and ‘low_zenith’; for each of these keys, value is a dict with keys
‘zenith_bounds’, ‘ghi_bounds’, and ‘ratio_bounds’ and value is an ordered pair [lower, up-
per] of float.

Returns
* consistent_components (Series) — True where ghi, dhi and dni components are consistent.

* diffuse_ratio_limit (Series) — True where diffuse to GHI ratio passes limit test.

I'C.N. Long and Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

12 Chapter 3. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/stdtypes.html#dict

PVAnalytics

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References

Examples using pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad

* QCrad Consistency for Irradiance Data

GHI and POA irradiance can be validated against clearsky values to eliminate data that is unrealistically high.

quality.irradiance. Identify irradiance values which do not exceed clearsky
clearsky_1limits(measured, ...) values.

pvanalytics.quality.irradiance.clearsky_limits

pvanalytics.quality.irradiance.clearsky_limits(measured, clearsky, csi_max=1.1)

Identify irradiance values which do not exceed clearsky values.

Uses pvlib.irradiance.clearsky_index() to compute the clearsky index as the ratio of measured to
clearsky. Compares the clearsky index to csi_max to identify values in measured that are less than or equal
to csi_max.

Parameters
» measured (Series) — Measured irradiance in W/m?.
* clearsky (Series) — Expected clearsky irradiance in W/m?2.

* csi_max (float, default 1.1)- Maximum ratio of measured to clearsky (clearsky in-
dex).

Returns True for each value where the clearsky index is less than or equal to csi_max.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

3.1.

API Reference 13

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.clearsky_index.html#pvlib.irradiance.clearsky_index
https://docs.python.org/3/library/functions.html#float
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

Examples using pvanalytics.quality.irradiance.clearsky_limits

* Clearsky Limits for Irradiance Data

You may want to identify entire days that have unrealistically high or low insolation. The following function examines
daily insolation, validating that it is within a reasonable range of the expected clearsky insolation for the same day.

quality.irradiance. Check that daily insolation lies between minimum and
daily_insolation_limits(...) maximum values.

pvanalytics.quality.irradiance.daily_insolation_limits

pvanalytics.quality.irradiance.daily_insolation_limits(irrad, clearsky, daily_min=0.4,
daily_max=1.25)
Check that daily insolation lies between minimum and maximum values.

Irradiance measurements and clear-sky irradiance on each day are integrated with the trapezoid rule to calculate
daily insolation.

Parameters
e irrad (Series) — Irradiance measurements (GHI or POA).
» clearsky (Series) — Clearsky irradiance.

» daily_min (float, default 0.4)-Minimum ratio of daily insolation to daily clearsky
insolation.

» daily_max(float, default 1.25)—Maximum ratio of daily insolation to daily clearsky
insolation.

Returns True for values on days where the ratio of daily insolation to daily clearsky insolation is
between daily_min and daily_max.

Return type Series

Notes

The default limits (daily_max and daily_min) have been set for GHI and POA irradiance for systems with fixed
azimuth and tilt. If you pass POA irradiance for a tracking system it is recommended that you increase daily_max
to 1.35.

The default values for daily_min and daily_max were taken from the PVFleets QA Analysis project.

Examples using pvanalytics.quality.irradiance.daily_insolation_limits

* Clearsky Limits for Daily Insolation

14 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

Gaps

Identify gaps in the data.

quality.gaps.interpolation_diff(x[, window, Identify sequences which appear to be linear.

o))

pvanalytics.quality.gaps.interpolation_diff

pvanalytics.quality.gaps.interpolation_diff (x, window=6, rtol=1e-05, atol=1e-08, mark='tail")
Identify sequences which appear to be linear.

Sequences are linear if the first difference appears to be constant. For a window of length N, the last value (index
N-1) is flagged if all values in the window appear to be a line segment.

Parameters rfol and atol have the same meaning as in numpy.allclose().
Parameters
* X (Series) — data to be processed

* window (int, default 6) — number of sequential values that, if the first difference is
constant, are classified as a linear sequence

» rtol (float, default le-5) — tolerance relative to max(abs(x.diff()) for detecting a
change

» atol (float, default le-8)-—absolute tolerance for detecting a change in first difference

* mark (str, default 'tail') — How much of the window to mark True when a sequence
of interpolated values is detected. Can be one of ‘tail’, ‘end’, or ‘all’.

— If “tail’ (the default) then every point in the window except the first point is marked True.

— If ‘end’ then the first window - 1 values in an interpolated sequence are marked False and
all subsequent values in the sequence are marked True.

— If “all’ then every point in the window including the first point is marked True.
Returns True for each value that is part of a linear sequence
Return type Series

Raises ValueError — If window < 3 or mark is not one of ‘tail’, ‘end’, or ‘all’.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

3.1. API Reference 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

Examples using pvanalytics.quality.gaps.interpolation_diff

* [nterpolated Data Periods

Data sometimes contains sequences of values that are “stale” or “stuck.” These are contiguous spans of data where the
value does not change within the precision given. The functions below can be used to detect stale values.

Note: If the data has been altered in some way (i.e. temperature that has been rounded to an integer value) before
being passed to these functions you may see unexpectedly large amounts of stale data.

quality.gaps.stale_values_diff(x[, window, Identify stale values in the data.

)

quality.gaps.stale_values_round(x[, window, Identify stale values by rounding.

)

pvanalytics.quality.gaps.stale_values_diff

pvanalytics.quality.gaps.stale_values_diff (x, window=6, rtol=1e-05, atol=1e-08, mark="tail")
Identify stale values in the data.

For a window of length N, the last value (index N-1) is considered stale if all values in the window are close to
the first value (index 0).

Parameters rtol and atol have the same meaning as in numpy.allclose().
Parameters
* X (Series) — data to be processed

» window (int, default 6)-number of consecutive values which, if unchanged, indicates
stale data

e rtol (float, default 1le-5) - relative tolerance for detecting a change in data values
» atol (float, default le-8)- absolute tolerance for detecting a change in data values

» mark (str, default 'tail')— How much of the window to mark True when a sequence
of stale values is detected. Can one be of ‘tail’, ‘end’, or ‘all’.

— If ‘“tail’ (the default) then every point in the window except the first point is marked True.

— If ‘end’ then the first window - I values in a stale sequence sequence are marked False
and all subsequent values in the sequence are marked True.

— If “all’ then every point in the window including the first point is marked True.
Returns True for each value that is part of a stale sequence of data
Return type Series

Raises ValueError — If window < 2 or mark is not one of ‘tail’, ‘end’, or ‘all’.

16 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

PVAnalytics

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

Examples using pvanalytics.quality.gaps.stale_values_diff

e Stale Data Periods

pvanalytics.quality.gaps.stale_values_round

pvanalytics.quality.gaps.stale_values_round(x, window=6, decimals=3, mark="tail")
Identify stale values by rounding.

A value is considered stale if it is part of a sequence of length window of values that are identical when rounded
to decimals decimal places.

Parameters
* X (Series) — Data to be processed.

* window (int, default 6)-— Number of consecutive identical values for a data point to be
considered stale.

* decimals (int, default 3)- Number of decimal places to round to.

» mark (str, default 'tail')—How much of the window to mark True when a sequence
of stale values is detected. Can be one of ‘tail’, ‘end’, or ‘all’.

— If ‘tail’ (the default) then every point in the window except the first point is marked True.

— If ‘end’ then the first window - I values in a stale sequence sequence are marked False
and all subsequent values in the sequence are marked True.

— If “all’ then every point in the window including the first point is marked True.
Returns True for each value that is part of a stale sequence of data.
Return type Series

Raises ValueError — If mark is not one of ‘tail’, ‘end’, or ‘all’.

Notes

Based on code from the pvfleets_qa_analysis project. Copyright (c) 2020 Alliance for Sustainable Energy, LLC.

3.1. API Reference 17

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

PVAnalytics

Examples using pvanalytics.quality.gaps.stale_values_round

e Stale Data Periods

The following functions identify days with incomplete data.

quality.gaps.completeness_score(series], ...]) Calculate a data completeness score for each day.
quality.gaps.complete(series[, ...]) Select data points that are part of days with complete
data.

pvanalytics.quality.gaps.completeness_score

pvanalytics.quality.gaps.completeness_score(series, freg=None, keep_index=True)
Calculate a data completeness score for each day.

The completeness score for a given day is the fraction of time in the day for which there is data (a value other
than NaN). The time duration attributed to each value is equal to the timestamp spacing of series, or freq if it is
specified. For example, a 24-hour time series with 30 minute timestamp spacing and 24 non-NaN values would
have data for a total of 12 hours and therefore a completeness score of 0.5.

Parameters
* series (Series) — A Datetimelndexed series.

» freq(str, default None)-Interval between samples in the series as a pandas frequency
string. If None, the frequency is inferred using pandas.infer_freq().

e keep_index (boolean, default True)- Whether or not the returned series has the same
index as series. If False the returned series will be indexed by day.

Returns A series of floats giving the completeness score for each day (fraction of the day for which
series has data).

Return type Series

Raises ValueError — If freq is longer than the frequency inferred from series.

Examples using pvanalytics.quality.gaps.completeness_score

e Missing Data Periods

pvanalytics.quality.gaps.complete

pvanalytics.quality.gaps.complete(series, minimum_completeness=0.333, freq=None)
Select data points that are part of days with complete data.

A day has complete data if its completeness score is greater than or equal to minimum_completeness. The com-
pleteness score is calculated by completeness_score().

Parameters
* series (Series) — The data to be checked for completeness.

* minimum_completeness (float, default 0.333)- Fraction of the day that must have
data.

18 Chapter 3. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float

PVAnalytics

» freq (str, default None) — The expected frequency of the data in series. If none then
the frequency is inferred from the data.

Returns A series of booleans with True for each value that is part of a day with completeness greater
than minimum_completeness.

Return type Series
Raises ValueError — See completeness_score().
See also:

completeness_score

Examples using pvanalytics.quality.gaps.complete

* Missing Data Periods

Many data sets may have leading and trailing periods of days with sporadic or no data. The following functions can be
used to remove those periods.

quality.gaps.start_stop_dates(series[, days]) Get the start and end of data excluding leading and trail-
ing gaps.

quality.gaps. trim(series[, days]) Mask the beginning and end of the data if not all True.

quality.gaps.trim_incomplete(series], ...]) Trim the series based on the completeness score.

pvanalytics.quality.gaps.start_stop_dates

pvanalytics.quality.gaps.start_stop_dates(series, days=10)
Get the start and end of data excluding leading and trailing gaps.

Parameters
» series (Series) — A DatetimeIndexed series of booleans.

* days (int, default 10)- The minimum number of consecutive days where every value
in series is True for data to start or stop.

Returns

* start (Datetime or None) — The first valid day. If there are no sufficiently long periods of
valid days then None is returned.

o stop (Datetime or None) — The last valid day. None if start is None.

pvanalytics.quality.gaps.trim

pvanalytics.quality.gaps.trim(series, days=10)
Mask the beginning and end of the data if not all True.

Parameters
e series (Series) — A Datetimelndexed series of booleans

» days (int, default 10)— Minimum number of consecutive days that are all True for
‘good’ data to start.

3.1. API Reference 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PVAnalytics

Returns A series of booleans with True for all data points between the first and last block of days
consecutive days that are all True in series. If series does not contain such a block of consecutive
True values, then the returned series will be entirely False.

Return type Series
See also:

start_stop_dates

pvanalytics.quality.gaps.trim_incomplete

pvanalytics.quality.gaps.trim_incomplete (series, minimum_completeness=0.333333, days=10,
freq=None)
Trim the series based on the completeness score.

Combines completeness_score() and trim().
Parameters
» series (Series) — A DatetimeIndexed series.

* minimum_completeness (float, default 0.333333) — The minimum completeness
score for each day.

» days (int, default 10)— The number of consecutive days with completeness greater
than minumum_completeness for the ‘good’ data to start or end. See start_stop_dates()
for more information.

o freq (str, default None) — The expected frequency of the series. See
completeness_score () fore more information.

Returns A series of booleans with the same index as series with False up to the first complete day,
True between the first and the last complete days, and False following the last complete day.

Return type Series
See also:

trim, completeness_score

Examples using pvanalytics.quality.gaps.trim_incomplete

* Missing Data Periods

Outliers

Functions for detecting outliers.

quality.outliers. tukey(datal, k]) Identify outliers based on the interquartile range.
quality.outliers.zscore(data[, zmax, Identify outliers using the z-score.

nan_policy])

quality.outliers.hampel(data[, window, ...]) Identify outliers by the Hampel identifier.

20 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PVAnalytics

pvanalytics.quality.outliers.tukey

pvanalytics.quality.outliers.tukey(data, k=1.5)
Identify outliers based on the interquartile range.

A value x is considered an outlier if it does not satisfy the following condition

Q1 —k(Qs— Q1) <z <Q3+k(Qs— Q1)

where @1 is the value of the first quartile and ()3 is the value of the third quartile.
Parameters
e data (Series) — The data in which to find outliers.

* k (float, default 1.5)— Multiplier of the interquartile range. A larger value will be
more permissive of values that are far from the median.

Returns A series of booleans with True for each value that is an outlier.

Return type Series

Examples using pvanalytics.quality.outliers.tukey

» Tukey Outlier Detection

pvanalytics.quality.outliers.zscore

pvanalytics.quality.outliers.zscore(data, zmax=1.5, nan_policy="raise")
Identify outliers using the z-score.

Points with z-score greater than zmax are considered as outliers.
Parameters
e data (Series) — A series of numeric values in which to find outliers.
» zmax (float) — Upper limit of the absolute values of the z-score.

e nan_policy ({raise', 'omit'}, default 'raise')— Define how to handle NaNs in the
input series. If ‘raise’, a ValueError is raised when data contains NaNs. If ‘omit’, NaNs are
ignored and False is returned at indices that contained NaN in data.

Returns A series of booleans with True for each value that is an outlier.

Return type Series

Examples using pvanalytics.quality.outliers.zscore

e Z-Score Outlier Detection

3.1. API Reference 21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

pvanalytics.quality.outliers.hampel

pvanalytics.quality.outliers.hampel (data, window=5, max_deviation=3.0, scale=None)
Identify outliers by the Hampel identifier.

The Hampel identifier is computed according to'.
Parameters
e data (Series) — The data in which to find outliers.

» window (int or offset, default 5)- The size of the rolling window used to compute
the Hampel identifier.

» max_deviation (float, default 3.0) — Any value with a Hampel identifier >
max_deviation standard deviations from the median is considered an outlier.

e scale (float, optional) — Scale factor used to estimate the standard deviation as
M AD/scale. If scale=None (default), then the scale factor is taken to be scipy.stats.
norm.ppf(3/4.) (approx. 0.6745), and M AD/scale approximates the standard deviation
of Gaussian distributed data.

Returns True for each value that is an outlier according to its Hampel identifier.

Return type Series

References
Examples using pvanalytics.quality.outliers.hampel
e Hampel Outlier Detection
Time

Quality control related to time. This includes things like time-stamp spacing, time-shifts, and time zone validation.

quality.time.spacing(times, freq) Check that the spacing between times conforms to freq.

pvanalytics.quality.time.spacing
pvanalytics.quality.time.spacing(times, freq)
Check that the spacing between times conforms to freq.
Parameters
e times (DatetimeIndex) —
» freq (string or Timedelta) - Expected frequency of times.
Returns True when the difference between one time and the time before it conforms to freq.

Return type Series

! Pearson, R.K., Neuvo, Y., Astola, J. et al. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 87 (2016). https://doi.org/10.
1186/s13634-016-0383-6

22 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://doi.org/10.1186/s13634-016-0383-6
https://doi.org/10.1186/s13634-016-0383-6

PVAnalytics

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

Timestamp shifts, such as daylight savings, can be identified with the following functions.

quality.time.shifts_ruptures(event_times, ...) Identify time shifts using the ruptures library.

quality.time.has_dst(events, tz[, window, ...]) Return True if events appears to have daylight savings
shifts at the dates on which #z transitions to or from day-
light savings time.

pvanalytics.quality.time.shifts_ruptures

pvanalytics.quality.time.shifts_ruptures(event_times, reference_times, period_min=2, shift_min=15,
round_up_from=None, prediction_penalty=13)
Identify time shifts using the ruptures library.

Compares the event time in the expected time zone (reference_times) with the actual event time in event_times.

The Pelt changepoint detection method is applied to the difference between event_times and reference_times. For
each period between change points the mode of the difference is rounded to a multiple of shift_min and returned
as the time-shift for all days in that period.

Parameters

* event_times (Series) — Time of an event in minutes since midnight. Should be a time
series of integers with a single value per day. Typically the time mid-way between sunrise
and sunset.

» reference_times (Series)— Time of event in minutes since midnight for each day in the
expected timezone. For example, passing solar transit time in a fixed offset time zone can be
used to detect daylight savings shifts when it is unknown whether or not event_times is in a
fixed offset time zone.

e period_min (int, default 2)- Minimum number of days between shifts. Must be less
than or equal to the number of days in event_times. [days]

Increasing this parameter will make the result less sensitive to transient shifts. For example
if your intent is to find and correct daylight savings time shifts passing period_min=60 can
give good results while excluding shorter periods that appear shifted.

e shift_min (int, default 15) — Minimum shift amount in minutes. All shifts are
rounded to a multiple of shift_min. [minutes]

e round_up_from (int, optional) — The number of minutes greater than a multiple of
shift_min for a shift to be rounded up. If a shift is less than round_up_from then it will
be rounded towards 0. If not specified then the shift will be rounded up from shift_min //
2. Using a larger value will effectively make the shift detection more conservative as small
variations will tend to be rounded to zero. [minutes]

» prediction_penalty(int, default 13)-Penalty usedin assessingchange points. See
ruptures.detection.Pelt.predict() for more information.

Returns

* shifted (Series) — Boolean series indicating whether there appears to be a time shift on that
day.

3.1. API Reference 23

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PVAnalytics

* shift_amount (Series) — Time shift in minutes for each day in event_times. These times can
be used to shift the data into the same time zone as reference_times.

Raises ValueError — If the number of days in event_times is less than period_min.

Notes

Timestamped data from monitored PV systems may not always be localized to a consistent timezone. In some
cases, data is timestamped with local time that may or may not be adjusted for daylight savings time transitions.
This function helps detect issues of this sort, by detecting points where the time of some daily event (e.g. solar
noon) changes significantly with respect to a reference time for the event. If the data’s timestamps have not been
adjusted for daylight savings transitions, the time of day at solar noon will change by roughly 60 minutes in the
days before and after the transition.

To use this changepoint detection method to determine if your data’s timestamps involve daylight savings tran-
sitions, first reduce your PV system data (irradiance or power) to a daily time series, with each point being the
observed midday time in minutes. For example, if sunrise and sunset are inferred from the PV system data, the
midday time can be inferred as the average of each day’s sunrise and sunset time of day. To establish the expected
midday time, calculate solar transit time in time of day.

Derived from the PVFleets QA project.

pvanalytics.quality.time.has_dst

pvanalytics.quality.time.has_dst (events, tz, window=7, min_difference=45, missing="raise")
Return True if events appears to have daylight savings shifts at the dates on which #z transitions to or from daylight
savings time.

The mean event time in minutes since midnight is calculated over the window days before and after the date of
each daylight savings transition in #z. For each date, the two mean event times (before and after) are compared,
and if the difference is greater than min_difference then a shift has occurred on that date.

Parameters

* events (Series) — Series with one timestamp for each day. The timestamp should corre-
spond to an event that occurs at roughly the same time on each day. For example, you may
pass sunrise, sunset, or solar transit time. events need not be localized.

* tz (str) — Name of a timezone that observes daylight savings and has the same or similar
UTC offset as the expected time zone for events.

» window (int, default 7)- Number of days before and after the shift date to consider.
When passing rounded timestamps in events it may be necessary to use a smaller window.
[days]

e min_difference (int, default 45) — Minimum difference between the mean event
time before the shift date and the mean event time after the event time. If the difference
is greater than min_difference a shift has occurred on that date. [minutes]

* missing ({'raise', 'warn'}, default 'raise'’)— Whether to raise an exception or issue
a warning when there is no data at a transition date. Can be ‘raise’ or ‘warn’. If ‘warn’ and
there is no data adjacent to a transition date, False is returned for that date.

Returns Boolean Series with the same index as events True for dates that appear to have daylight
savings transitions.

Return type Series

Raises ValueError — If there is no data in the window days before or after a shift date in events.

24 Chapter 3. Contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

PVAnalytics

Utilities

The quality.util module contains general-purpose/utility functions for building your own quality checks.

quality.util.check_limits(vall,...]) Check whether a value falls withing the given limits.
quality.util.daily_min(series, minimumy|, ...]) Return True for data on days when the day's minimum
exceeds minimum.

pvanalytics.quality.util.check_limits

pvanalytics.quality.util.check_limits(val, lower_bound=None, upper_bound=None,
inclusive_lower=False, inclusive_upper=False)
Check whether a value falls withing the given limits.

At least one of lower_bound or upper_bound must be provided.
Parameters
e val (array_like) — Values to test.
e lower_bound (float, default None) - Lower limit.
* upper_bound (float, default None)- Upper limit.

e inclusive_lower (bool, default False)— Whether the lower bound is inclusive (val
>= lower_bound).

* inclusive_upper (bool, default False)- Whether the upper bound is inclusive (val
<= upper_bound).

Returns True for every value in val that is between lower_bound and upper_bound.
Return type array_like

Raises ValueError — if lower_bound nor upper_bound is provided.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.util.daily_min

pvanalytics.quality.util.daily_min(series, minimum, inclusive=False)
Return True for data on days when the day’s minimum exceeds minimum.

Parameters
e series (Series) — A Datetimeindexed series of floats.
* minimum (float) — The smallest acceptable value for the daily minimum.

e inclusive (boolean, default False)— Use greater than or equal to when comparing
daily minimums from series to minimum.

Returns True for values on days where the minimum value recorded on that day is greater than (or
equal to) minimum.

3.1. API Reference 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/functions.html#float

PVAnalytics

Return type Series

Notes

This function is derived from code in the pvfleets_qa_analysis project under the terms of the 3-clause BSD
license. Copyright (c) 2020 Alliance for Sustainable Energy, LLC.

Weather

Quality checks for weather data.

quality.weather.relative_humidity_limits(...) Identify relative humidity values that are within limits.
quality.weather. temperature_limits(...[, Identify temperature values that are within limits.

limits])
quality.weather.wind_limits(wind_speed[, lim- Identify wind speed values that are within limits.

its])

pvanalytics.quality.weather.relative_humidity_limits

pvanalytics.quality.weather.relative_humidity_limits (relative_humidity, limits=(0, 100))
Identify relative humidity values that are within limits.

Parameters
* relative_humidity (Series) — Relative humidity in %.
e limits (tuple, default (0, 100))- (lowerbound, upper bound) for relative humidity.

Returns True if relative_humidity >= lower bound and relative_humidity <= upper_bound.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/

SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.weather.temperature_limits

pvanalytics.quality.weather.temperature_limits(air_temperature, limits=(- 35.0, 50.0))
Identify temperature values that are within limits.

Parameters
* air_temperature (Series) — Air temperature [C].
e limits (tuple, default (-35, 50))- (lower bound, upper bound) for temperature.

Returns True if air_temperature > lower bound and air_temperature < upper bound.

Return type Series

26 Chapter 3. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/stdtypes.html#tuple

PVAnalytics

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.weather.wind_limits

pvanalytics.quality.weather.wind_limits(wind_speed, limits=(0.0, 50.0))
Identify wind speed values that are within limits.

Parameters

» wind_speed (Series)— Wind speed in m/s

* limits (tuple, default (0, 580))- (lower bound, upper bound) for wind speed.
Returns True if wind_speed >= lower bound and wind_speed < upper bound.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

In addition to validating temperature by comparing with limits, module temperature should be positively correlated
with irradiance. Poor correlation could indicate that the sensor has become detached from the module, for example.
Unlike other functions in the quality module which return Boolean masks over the input series, this function returns
a single Boolean value indicating whether the entire series has passed (True) or failed (False) the quality check.

quality.weather.module_temperature_check(...) Test whether the module temperature is correlated with
irradiance.

pvanalytics.quality.weather.module_temperature_check

pvanalytics.quality.weather.module_temperature_check(module_temperature, irradiance,
correlation_min=0.5)
Test whether the module temperature is correlated with irradiance.

Parameters
* module_temperature (Series) — Time series of module temperature.

e irradiance (Series) — Time series of irradiance with the same index as mod-
ule_temperature. This should be of relatively high quality (outliers and other problems re-
moved).

e correlation_min (float, default 0.5) — Minimum correlation between mod-
ule_temperature and irradiance for the module temperature sensor to ‘pass’

Returns True if the correlation between module_temperature and irradiance exceeds correla-
tion_min.

Return type bool

3.1. API Reference 27

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/stdtypes.html#tuple
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PVAnalytics

References

3.1.2 Features

Functions for detecting features in the data.

Clipping

Functions for identifying inverter clipping

features.clipping.levels(ac_power[, window, Label clipping in AC power data based on levels in the

)] data.
features.clipping. threshold(ac_power], ...]) Detect clipping based on a maximum power threshold.
features.clipping.geometric(ac_power|, ...]) Identify clipping based on a the shape of the ac_power

curve on each day.

pvanalytics.features.clipping.levels

pvanalytics.features.clipping.levels(ac_power, window=4, fraction_in_window=0.75, rtol=0.005,

levels=2)
Label clipping in AC power data based on levels in the data.

Parameters

* ac_power (Series) — Time series of AC power measurements.

e window (int, default 4)- Number of data points in a window used to detect clipping.

e fraction_in_window (float, default 0.75)—Fraction of points which indicate clip-

ping if AC power at each point is close to the plateau level.

» rtol (float, default 5e-3)— A point is close to a clipped level M if abs(ac_power -

M) < rtol * max(ac_power)

* levels (int, default 2)- Number of clipped power levels to consider.

Returns True when clipping is indicated.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/

SOLARFORECASTARBITER_LICENSE for more information.

28

Chapter 3. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

pvanalytics.features.clipping.threshold

pvanalytics.features.clipping.threshold(ac_power, slope_max=0.0035, power_min=0.75,
power_quantile=0.995, freq=None)
Detect clipping based on a maximum power threshold.

This is a two-step process. First a clipping threshold is identified, then any values in ac_power greater than or
equal to that threshold are flagged.

The clipping threshold is determined by computing a ‘daily power curve’ which is the power_quantile quantile
of all values in ac_power at each minute of the day. This gives a rough estimate of the maximum power produced
at each minute of the day.

The daily power curve is normalized by its maximum and the minutes of the day are identified where the normal-
ized curve’s slope is less than slope_max. If there is a continuous period of time spanning at least one hour where
the slope is less than slope_max and the value of the normalized daily power curve is greater than power_min
times the median of the normalized daily power curve then the data has clipping in it. If no sufficiently long
period with both a low slope and high power exists then there is no clipping in the data. The average of the daily
power curve (not normalized) during the longest period that satisfies the criteria above is the clipping threshold.

Parameters
* ac_power (Series) — Datetimelndexed series of AC power data.

* slope_max (float, default 0.0035)— Maximum absolute value of slope of AC power
quantile for clipping to be indicated. The default value has been derived empirically to pre-
vent false positives for tracking PV systems.

* power_min (float, default 0.75) — The power during periods with slope less than
slope_max must be greater than power_min times the median normalized daytime power.

* power_quantile (float, default 0.995)— Quantile used to calculate the daily power
curve.

» freq (string, default None) — A pandas string offset giving the frequency of data in
ac_power. If None then the frequency is inferred from the series index.

Returns True when ac_power is greater than or equal to the clipping threshold.

Return type Series

Notes

This function is based on the pvfleets_qga_analysis project.

pvanalytics.features.clipping.geometric

pvanalytics. features.clipping.geometric(ac_power, window=None, slope_max=0.2, freq=None,
tracking=False)
Identify clipping based on a the shape of the ac_power curve on each day.

Each day is checked for periods where the slope of ac_power is small. The power values in these periods are used
to calculate a minimum and a maximum clipped power level for that day. Any power values that are within this
range are flagged as clipped. The methodology for computing the thresholds varies depending on the frequency
of ac_power. For high frequency data (less than 10 minute timestamp spacing) the minimum clipped power is
the mean of the low-slope period(s) on that day minus 2 times the standard deviation in the same period(s). For
lower frequency data the absolute minimum and maximum of the low slope period(s) on each day are used.

3.1. API Reference 29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

If the frequency of ac_power is less than ten minutes, then ac_power is down-sampled to 15 minutes and the
mean value in each 15-minute period is used to reduce noise inherent in high frequency data.

Parameters
* ac_power (Series)— AC power data.

» window (int, optional) - Size of the rolling window used to identify low-slope periods.
If not specified and tracking is False then window=3 is used. If not specified and tracking is
True then window=5 is used.

e slope_max (float, default 0.2)— Maximum difference in maximum and minimum
power for a window to be flagged as clipped. Units are percent of average power in the
interval.

» freq (str, optional) — Frequency of ac_power. If not specified then pandas.
infer_freq() is used.

» tracking (bool, default False)- If True then a larger default window is used. If win-
dow is specified then tracking has no effect.

Returns Boolean Series with True for values that appear to be clipped.
Return type Series

Raises ValueError - If the index of ac_power is not sorted.

Notes

Based on code from the PVFleets QA project.

Examples using pvanalytics.features.clipping.geometric

* Clipping Detection

Clearsky

features.clearsky.reno(ghi, ghi_clearsky) Identify times when GHI is consistent with clearsky con-
ditions.

pvanalytics.features.clearsky.reno

pvanalytics.features.clearsky.reno(ghi, ghi_clearsky)
Identify times when GHI is consistent with clearsky conditions.

Uses the function pvlib.clearsky.detect_clearsky().

Note: Must be given GHI data with regular (constant) time intervals of 15 minutes or less.

Parameters

* ghi (Series)— Global horizontal irradiance in W/m?2. Must have an index with time inter-
vals of at most 15 minutes.

30 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.infer_freq.html#pandas.infer_freq
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html#pvlib.clearsky.detect_clearsky

PVAnalytics

« ghi_clearsky (Series) — Global horizontal irradiance in W/m? under clearsky condi-
tions.

Returns True when clear sky conditions are indicated.
Return type Series

Raises ValueError — if the time intervals are greater than 15 minutes.

Notes

Clear-sky conditions are inferred when each of six criteria are met; see pvlib.clearsky.detect_clearsky()
for references and details. Threshold values for each criterion were originally developed for ten minute windows
containing one-minute data'. As indicated in®, the algorithm also works for longer windows and data at different
intervals if threshold criteria are roughly scaled to the window length. Here, the threshold values are based on
[1] with the scaling indicated in [2].

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References

Examples using pvanalytics. features.clearsky.reno

e Clear-Sky Detection

Orientation
System orientation refers to mounting type (fixed or tracker) and the azimuth and tilt of the mounting. A system’s
orientation can be determined by examining power or POA irradiance on days that are relatively sunny.

This module provides functions that operate on power or POA irradiance to identify system orientation on a daily basis.
These functions can tell you whether a day’s profile matches that of a fixed system or system with a single-axis tracker.

Care should be taken when interpreting function output since other factors such as malfunctioning trackers can interfere
with identification.

features.orientation. fixed_nrel(..[, ...]) Flag days that match the profile of a fixed PV system on
a sunny day.
features.orientation. tracking_nrel(...[, ...]) Flag days that match the profile of a single-axis tracking

PV system on a sunny day.

I Reno, M.J. and C.W. Hansen, “Identification of periods of clear sky irradiance in time series of GHI measurements” Renewable Energy, v90,
p. 520-531, 2016.

2 B. H. Ellis, M. Deceglie and A. Jain, “Automatic Detection of Clear-Sky Periods From Irradiance Data,” in IEEE Journal of Photovoltaics, vol.
9, no. 4, pp. 998-1005, July 2019. doi: 10.1109/JPHOTOV.2019.2914444

3.1. API Reference 31

https://docs.python.org/3/library/exceptions.html#ValueError
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.clearsky.detect_clearsky.html#pvlib.clearsky.detect_clearsky
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

pvanalytics.features.orientation.fixed_nrel

pvanalytics.features.orientation.fixed_nrel (power_or_irradiance, daytime, r2_min=0.94,
min_hours=35, peak_min=None)
Flag days that match the profile of a fixed PV system on a sunny day.

This algorithm relies on the observation that the power profile of a fixed tilt PV system often resembles a quadratic
polynomial on a sunny day, with a single peak when the sun is near the system azimuth.

A day is marked True when the r? for a quadratic fit to the power data is greater than r2_min.
Parameters

* power_or_irradiance (Series) — Timezone localized series of power or irradiance mea-
surements.

» daytime (Series) — Boolean series with True for times that are during the day. For best
results this mask should exclude early morning and evening as well as night. Data at these
times may have problems with shadows that interfere with curve fitting.

e r2_min (float, default 0.94)— Minimum r? of a quadratic fit for a day to be marked
True.

* min_hours (float, default 5.0)—- Minimum number of hours with data to attempt a
fit on a day.

* peak_min (float, default None)- The maximum power_or_irradiance value for a day
must be greater than peak_min for a fit to be attempted. If the maximum for a day is less than
peak_min then the day will be marked False.

Returns True for values on days where power_or_irradiance matches the expected parabolic profile
for a fixed PV system on a sunny day.

Return type Series

Notes

This algorithm is based on the PVFleets QA Analysis project. Copyright (c) 2020 Alliance for Sustainable
Energy, LLC.

Examples using pvanalytics. features.orientation.fixed_nrel

» Flag Sunny Days for a Fixed-Tilt System

pvanalytics.features.orientation.tracking_nrel

pvanalytics.features.orientation.tracking_nrel (power_or_irradiance, daytime, r2_min=0.915,
r2_fixed_max=0.96, min_hours=>5, peak_min=None,
quadratic_mask=None)
Flag days that match the profile of a single-axis tracking PV system on a sunny day.

This algorithm relies on the observation that the power profile of a single-axis tracking PV system tends to
resemble a quartic polynomial on a sunny day, L.e., two peaks are observed, one before and one after the sun
crosses the tracker azimuth. By contrast, the power profile for a fixed tilt PV system often resembles a quadratic
polynomial on a sunny day, with a single peak when the sun is near the system azimuth.

32 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

The algorithm fits both a quartic and a quadratic polynomial to each day’s data. A day is marked True if the
quartic fit has a sufficiently high 72 and the quadratic fit has a sufficiently low 2. Specifically, a day is marked
True when three conditions are met:

1. arestricted quartic' must fit the data with 2 greater than r2_min
2. the 72 for the restricted quartic fit must be greater than the 2 for a quadratic fit
3. the r2 for a quadratic fit must be less than r2_fixed_max
Values on days where any one of these conditions is not met are marked False.
Parameters

» power_or_irradiance (Series) — Timezone localized series of power or irradiance mea-
surements.

* daytime (Series) — Boolean series with True for times that are during the day. For best
results this mask should exclude early morning and late afternoon as well as night. Data at
these times may have problems with shadows that interfere with curve fitting.

e r2_min (float, default 0.915)— Minimum r2 of a quartic fit for a day to be marked
True.

» r2_fixed_max (float, default 0.96) — If the 72 of a quadratic fit exceeds
r2_fixed_max, then tracking/fixed cannot be distinguished and the day is marked False.

e min_hours (float, default 5.0)— Minimum number of hours with data to attempt a
fit on a day.

e peak_min (float, default None)-The maximum power_or_irradiance value for a day
must be greater than peak_min for a fit to be attempted. If the maximum for a day is less than
peak_min then the day will be marked False.

e quadratic_mask (Series, default None) - If None then daytime is used. This Series
is used to remove morning and afternoon times from the data before applying a quadratic fit.
The mask should typically exclude more data than daytime in order to eliminate long tails in
the morning or afternoon that can appear if a tracker is stuck in a West or East orientation.

Returns Boolean series with True for every value on a day that has a tracking profile (see criteria
above).

Return type Series
Notes

This algorithm is based on the PVFleets QA Analysis project. Copyright (c) 2020 Alliance for Sustainable
Energy, LLC.

! The specific quartic used for this fit is centered within 70 minutes of 12:00, the y-value at the center must be within 15% of the median for the
day, and it must open downwards.

3.1. API Reference 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

Examples using pvanalytics. features.orientation.tracking nrel

* Flag Sunny Days for a Tracking System

Daytime

Functions that return a Boolean mask indicating day and night.

features.daytime.power_or_irradiance(series) Return True for values that are during the day.

pvanalytics.features.daytime.power_or_irradiance

pvanalytics. features.daytime.power_or_irradiance(series, outliers=None, low_value_threshold=0.003,
low_median_threshold=0.0015,
low_diff _threshold=0.0005, median_days=7,
clipping=None, freqg=None, correction_window=31,
hours_min=35, day_length_difference_max=30,
day_length_window=14)
Return True for values that are during the day.

After removing outliers and normalizing the data, a time is classified as night when two of the following three
criteria are satisfied:

* near-zero value
* near-zero first-order derivative
* near-zero rolling median at the same time over the surrounding week (see median_days)

Mid-day times where power goes near zero or stops changing may be incorrectly classified as night. To correct
these errors, night or day periods with duration that is too long or too short are identified, and times in these
periods are re-classified to have the majority value at the same time on preceding and following days (as set by
correction_window).

Finally any values that are True in clipping are marked as day.
Parameters
» series (Series) — Time series of power or irradiance.

e outliers (Series, optional)— Boolean time series with True for values in series that
are outliers.

* low_value_threshold (float, default §.003) - Maximum normalized power or ir-
radiance value for a time to be considered night.

* low_median_threshold (float, default 0.0015) — Maximum rolling median of
power or irradiance for a time to be considered night.

e low_diff_threshold (float, default 0.0005)—- Maximum derivative of normalized
power or irradiance for a time to be considered night.

median_days (int, default 7)- Number of days to use to calculate the rolling median
at each minute. [days]

clipping (Series, optional) — True when clipping indicated. Any values where clip-
ping is indicated are automatically considered ‘daytime’.

34 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PVAnalytics

» freq (str, optional)— A pandas fregstr specifying the expected timestamp spacing for
the series. If None, the frequency will be inferred from the index.

» correction_window (int, default 31)— Number of adjacent days to examine when
correcting day/night classification errors. [days]

* hours_min (float, default 5)- Minimum number of hours in a contiguous period of
day or night. A day/night period shorter than hours_min is flagged for error correction.
[hours]

» day_length_difference_max (float, default 30) — Days with length that is
day_length_difference_max minutes less than the median length of surrounding days are
flagged for corrections.

* day_length_window (int, default 14) — The length of the rolling window used for
calculating the median length of the day when correcting errors in the morning or afternoon.
[days]

Returns Boolean time series with True for times that are during the day.
Return type Series

Notes

NA values are treated like zeros.

Derived from the PVFleets QA Analysis project.

Examples using pvanalytics. features.daytime.power_or_irradiance

» Flag Sunny Days for a Fixed-Tilt System
» Flag Sunny Days for a Tracking System
» Clearsky Limits for Irradiance Data

* Day-Night Masking

Shading

Functions for labeling shadows.

features.shading. fixed(ghi, daytime, clearsky) Detects shadows from fixed structures such as wires and
poles.

pvanalytics.features.shading.fixed

pvanalytics.features.shading. fixed(ghi, daytime, clearsky, interval=None, min_gradient=2)
Detects shadows from fixed structures such as wires and poles.

Uses morphological image processing methods to identify shadows from fixed local objects in GHI data. GHI
data are assumed to be reasonably complete with relatively few missing values and at a fixed time interval nomi-
nally of 1 minute over the course of several months. Detection focuses on shadows with relatively short duration.
The algorithm forms a 2D image of the GHI data by arranging time of day along the x-axis and day of year
along the y-axis. Rapid change in GHI in the x-direction is used to identify edges of shadows; continuity in the

3.1. API Reference 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PVAnalytics

y-direction is used to separate local object shading from cloud shadows.
Parameters

e ghi (Series) — Time series of GHI measurements. Data must be in local time at 1-minute
frequency and should cover at least 60 days.

» daytime (Series) — Boolean series with True for times when the sun is up.

* clearsky (Series) — Clearsky GHI with same index as ghi.

interval (int, optional) - Interval between data points in minutes. If not specified the
interval is inferred from the frequency of the index of ghi.

» min_gradient (float, default 2)- Threshold value for the morphological gradient’.
Returns
* Series — Boolean series with true for times that are impacted by shadows.

* ndarray — A boolean image (black and white) showing the shadows that were detected.

References

3.1.3 System

This module contains functions and classes relating to PV system parameters such as nameplate power, tilt, azimuth,
or whether the system is equipped with tracker.

Tracking

system. Tracker(value) Enum describing the orientation of a PV System.
system.is_tracking_envelope(series, daytime, ...) Infer whether the system is equipped with a tracker.

pvanalytics.system.Tracker

class pvanalytics.system.Tracker (value)
Enum describing the orientation of a PV System.

Attributes
FIXED A system with a fixed azimuth and tilt.
TRACKING A system equipped with a tracker.
UNKNOWN A system where the tracking cannot be determined.

3 https://docs.scipy.org/doc/scipy/reference/ generated/scipy.ndimage.morphological_gradient.html

36 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html

PVAnalytics

pvanalytics.system.is_tracking_envelope

pvanalytics.system.is_tracking_envelope (series, daytime, clipping, clip_max=0.1,
envelope_quantile=0.995, envelope_min_fraction=0.05,
fit_median=True, median_min_fraction=0.025,
median_r2_min=0.9, fit_params=None,
seasonal_split="north-america")
Infer whether the system is equipped with a tracker.

Data is grouped by season (optional) and within each season by the minute of the day. A maximum power or
irradiance envelope (the envelope_quantile value at each minute) is calculated. Quadratic and quartic curves are
fit to this daily envelope and the 2 of the curve fits are used determine whether the system is tracking or fixed.

If the quadratic fit is a sufficiently good in both seasons, then Tracker.FIXED is returned.

If, in both seasons, the quartic fit is sufficiently good and the quadratic fit is sufficiently bad, then Tracker.
TRACKING is returned.

If neither fit is sufficiently good, or the results from each season disagree, then Tracker . UNKNOWN is returned.

Optionally, an additional fit is made to the median of the data at each minute to confirm the determination of
tracking or fixed. If performed, this result must be consistent with the fit to the upper envelope. If not, Tracker.
UNKNOWN is returned.

Parameters
* series (Series) — Timezone localized Series of power or irradiance data.
» daytime (Series) — Boolean Series with True for times that are during the day.

e clipping (Series) — Boolean Series identifying where power or irradiance is being
clipped.

* clip_max (float, default 0.1)-Ifthefraction of dataflagged as clipped is greater than
clip_max then it cannot be determined whether the system is tracking or fixed and Tracker.
UNKNOWN is returned.

* envelope_quantile (float, default 0.995)— Quantile used to determine the upper
power or irradiance envelope.

» envelope_min_fraction (float, default 0.05)— After calculating the power or irra-
diance envelope, data less than envelope_min_fraction times the maximum of the envelope is
removed. This excludes data from morning and evening that may interfere with curve fitting.

o fit_median (boolean, default True)- Perform asecondary fit with the median power
or irradiance to validate that the profile is consistent through the entire data set.

* median_min_fraction (float, default 0.025)— After calculating the median power
or irradiance at each minute, data less than median_min_fraction times the maximum is
removed. This excludes data from morning and evening that may interfere with curve fitting.

e median_r2_min(float, default 0.9)—Minimum r2 fora curve fit to the median power
or irradiance at each minute of the day (Applies only if fit_median is True).

o fit_params (dict or None, default None) — Minimum r-squared for curve fits ac-
cording to the fraction of data with clipping. This should be a dictionary with tuple keys and
dictionary values. The key must be a 2-tuple of (clipping_min, clipping_max) where
the values specify the minimum and maximum fraction of data with clipping for which the
associated fit parameters are applicable. The values of the dictionary are themselves dictio-
naries with keys 'fixed' and 'tracking', which give the minimum r2 for the curve fits,
and 'fixed_max' which gives the maximum r2 for a quadratic fit if the system appears to
have a tracker.

3.1. API Reference 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

PVAnalytics

If None PVFLEETS_FIT_PARAMNS is used.

e seasonal_split (dict or str or None, default 'north-america'’) — A dictio-
nary with two keys, ‘winter’ and ‘summer’ with a list of integers specifying the winter
months and summer months respectively. Seasonal grouping can be disabled by passing
seasonal_split=None. Either season can be ignored by passing a dict that omits the key or

sets its value to None. The default value, ‘north-america’ uses {'winter': [11, 12,
1, 2], 'summer': [5, 6, 7, 8]} which works well for PV systems located in North
America.

Returns The tracking determined by curve fitting (FIXED, TRACKING, or UNKNOWN).
Return type Tracker

Notes

Derived from the PVFleets QA Analysis project.
See also:

pvanalytics. features.orientation.tracking_nrel, pvanalytics. features.orientation.
fixed_nrel

Orientation

The following function can be used to infer system orientation from power or plane of array irradiance measurements.

system.infer_orientation_daily_peak(...) Determine system azimuth and tilt from power or POA

using solar azimuth at the daily peak.

system.infer_orientation_fit_pvwatts(..[,...]) Get the tilt and azimuth that give PVWatts output that

most closely fits the data in power_ac.

pvanalytics.system.infer_orientation_daily peak

pvanalytics.system.infer_orientation_daily_peak(power_or_poa, sunny, tilts, azimuths, solar_azimuth,

solar_zenith, ghi, dhi, dni)
Determine system azimuth and tilt from power or POA using solar azimuth at the daily peak.

The time of the daily peak is estimated by fitting a quadratic to to the data for each day in power_or_poa and
finding the vertex of the fit. A brute force search is performed on clearsky POA irradiance for all pairs of candidate
azimuths and tilts (azimuths and tilts) to find the pair that results in the closest azimuth to the azimuths calculated
at the peak times from the curve fitting step. Closest is determined by minimizing the sum of squared difference
between the solar azimuth at the peak time in power_or_poa and the solar azimuth at maximum clearsky POA
irradiance.

The accuracy of the tilt and azimuth returned by this function will vary with the time-resolution of the clearsky
and solar position data. For the best accuracy pass solar_azimuth, solar_zenith, and the clearsky data (ghi, dhi,
and dni) with one-minute timestamp spacing. If solar_azimuth has timestamp spacing less than one minute it
will be resampled and interpolated to estimate azimuth at each minute of the day. Regardless of the timestamp
spacing these parameters must cover the same days as power_or_poa.

Parameters

* power_or_poa (Series)— Timezone localized series of power or POA irradiance measure-
ments.

38

Chapter 3. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PVAnalytics

* sunny (Series) — Boolean series with True for values during clearsky conditions.
e tilts (array-1like) — Candidate tilts in degrees.
* azimuths (array-I1ike) — Candidate azimuths in degrees.
e solar_azimuth (Series) — Time series of solar azimuth.
e solar_zenith (Series) — Time series of solar zenith.
* ghi (Series) — Clear sky GHI.
* dhi (Series) — Clear sky DHI.
* dni (Series) — Clear sky DNI.
Returns
 azimuth (float)

* tilt (float)

Notes

Based on PVFleets QA project.

pvanalytics.system.infer_orientation_fit_pvwatts

pvanalytics.system.infer_orientation_fit_pvwatts(power_ac, ghi, dhi, dni, solar_zenith, solar_azimuth,
temperature=25, wind_speed=0,
temperature_coefficient=- 0.004,
temperature_model_parameters=None)
Get the tilt and azimuth that give PVWatts output that most closely fits the data in power_ac.

Input data power_ac, ghi, dhi, dni should reflect clear-sky conditions.

Uses non-linear least squares to optimize over four free variables to find the values that result in the best fit
between power modeled using PVWatts and power_ac. The four free variables are

* surface tilt

* surface azimuth

¢ the DC capacity of the system

¢ the DC input limit of the inverter.

Of these four parameters, only tilt and azimuth are returned. While, DC capacity and the DC input limit are
calculated, their values may not be accurate. While its value is not returned, because the DC input limit is used
as a free variable for the optimization process, this function can operate on power_ac data that includes inverter

clipping.

All parameters passed as a Series must have the same index and must not contain any undefined values (i.e.
NaNs). If any input contains NaNs a ValueError is raised.

Parameters
» power_ac (Series) — AC power from the system in clear sky conditions.
* ghi (Series) — Clear sky GHI with same index as power_ac. [W/m”2]
* dhi (Series) — Clear sky DHI with same index as power_ac. [W/m”2]
* dni (Series) — Clear sky DNI with same index as power_ac. [W/m”2]

3.1. API Reference 39

PVAnalytics

» solar_zenith (Series) — Solar zenith. [degrees]
* solar_azimuth (Series) — Solar azimuth. [degrees]

* temperature (float or Series, default 25) — Air temperature at which to model
the hypothetical system. If a float then a constant temperature is used. If a Series, must have
the same index as power_ac. [C]

* wind_speed (float or Series, default 0) - Wind speed. If a float then a constant
wind speed is used. If a Series, must have the same index as power_ac. [m/s]

* temperature_coefficient (float, default -0.004) — Temperature coefficient of
DC power. [1/C]

e temperature_model_parameters (dict, optional) — Parameters fot
the cell temperature model. If not specified pvlib.temperature.
TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass'] is used.
See pvlib.temperature.sapm_cell() for more information.

Returns
* surface_tilt (float) — Tilt of the array. [degrees]
* surface_azimuth (float) — Azimuth of the array. [degrees]
* r_squared (float) — r2 value for the fit at the returned orientation.

Raises ValueError - If any input passed as a Series contains undefined values (i.e. NaNs).

3.1.4 Metrics

Performance Ratio

The following functions can be used to calculate system performance metrics.

metrics.performance_ratio_nrel(poa_global,...) Calculate NREL Performance Ratio.

pvanalytics.metrics.performance_ratio_nrel

pvanalytics.metrics.performance_ratio_nrel (poa_global, temp_air, wind_speed, pac, pdc0, a=- 3.56, b=-
0.075, deltaT=3, gamma_pdc=- 0.00433)
Calculate NREL Performance Ratio.

See equation [5] in Weather-Corrected Performance Ratio' for details on the weighted method for Tref.
Parameters
e poa_global (numeric) — Total incident irradiance [W/m”2].
* temp_air (numeric)— Ambient dry bulb temperature [C].
* wind_speed (numeric) — Wind speed at a height of 10 meters [m/s].
* pac (float)— AC power [kW].
* pdcO® (fIloat) — Power of the modules at 1000 W/m2 and cell reference temperature [kKW].

e a(float)— Parameter a in SAPM model [unitless].

! Dierauf et al. “Weather-Corrected Performance Ratio”. NREL, 2013. https:/www.nrel.gov/docs/fy130sti/57991.pdf

40 Chapter 3. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.temperature.sapm_cell.html#pvlib.temperature.sapm_cell
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.nrel.gov/docs/fy13osti/57991.pdf

PVAnalytics

e b (float) — Parameter b in in SAPM model [s/m].
e deltaT (float) — Parameter AT in SAPM model [C].

» gamma_pdc (fIoat)— The temperature coefficient in units of 1/C. Typically -0.002 to -0.005
per degree C [1/C].

Returns performance_ratio — Performance Ratio of data.
Return type float
References
Variability

Functions to calculate variability statistics.

metrics.variability_index(measured, clearsky) Calculate the variability index.

pvanalytics.metrics.variability_index

pvanalytics.metrics.variability_index (measured, clearsky, freq=None)
Calculate the variability index.

Parameters
e measured (Series) — Time series of measured GHI. [W/m2]
» clearsky (Series) — Time series of the expected clearsky GHI. [W/m2]

» freq (pandas datetime offset, optional)- Aggregation period (e.g. ‘D’ for daily).
If not specified, the variability index for the entire time series will be returned.

Returns vi — The calculated variability index

Return type Series or float

References

3.2 Example Gallery

This gallery shows examples of pvanalytics functionality. Community contributions are welcome!

3.2.1 Z-Score Outlier Detection

Identifying outliers in time series using z-score outlier detection.

Identifying and removing outliers from PV sensor time series data allows for more accurate data analysis. In this
example, we demonstrate how to use pvanalytics.quality.outliers.zscore() to identify and filter out outliers
in a time series.

import pvanalytics
from pvanalytics.quality.outliers import zscore
import matplotlib.pyplot as plt

(continues on next page)

3.2. Example Gallery 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVAnalytics

(continued from previous page)

import pandas as pd
import pathlib

First, we read in the ac_power_inv_7539_outliers example. Min-max normalized AC power is represented by the
“value_normalized” column. There is a boolean column “outlier” where inserted outliers are labeled as True, and
all other values are labeled as False. These outlier values were inserted manually into the data set to illustrate out-
lier detection by each of the functions. We use a normalized time series example provided by the PV Fleets Initia-
tive. This example is adapted from the DuraMAT DataHub clipping data set: https://datahub.duramat.org/dataset/
inverter-clipping-ml-training-set-real-data

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent

ac_power_file = pvanalytics_dir / 'data' / 'ac_power_inv_7539 outliers.csv'
data = pd.read_csv(ac_power_file, index_col=0, parse_dates=True)
print(data.head(10))

value_normalized outlier
timestamp
2017-04-10 19:15:00+00:00
2017-04-10 19:30:00+00:00
2017-04-11 06:15:00+00:00
2017-04-11 06:45:00+00:00
2017-04-11 07:00:00+00:00
2017-04-11 07:15:00+00:00
2017-04-11 07:30:00+00:00
2017-04-11 07:45:00+00:00
2017-04-11 08:00:00+00:00
2017-04-11 08:15:00+00:00

.000002 False
.000000 False
.000000 False
.033103 False
.043992 False
.055615 False
.110986 False
.184948 False
.276810 False
.358061 False

[— I — I — I — I — I — I — I — R}

We then use pvanalytics.quality.outliers.zscore() to identify outliers in the time series, and plot the data
with the z-score outlier mask.

zscore_outlier_mask = zscore(data=datal['value_normalized'])
data['value_normalized'].plot()

data.loc[zscore_outlier_mask, 'value_normalized'].plot(ls='"', marker='o'")
plt.legend(labels=["AC Power", "Detected Outlier"])

plt.xlabel("Date")

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

42 Chapter 3. Contents

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data
https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

2.0 4] — AC Power
o Detected Outlier

1.5~

1.0~ F‘I !- ﬂ

0.5 4

Normalized AC Power

-0.5 | o
T T T T T T T T T T
gy B ©
Tgwx o Y Y N SR N oy N Ny
A0 40 40> 0% 40 0% 0% 40> 0% g0t
Date

Total running time of the script: (0 minutes 0.254 seconds)

3.2.2 Tukey Outlier Detection

Identifying outliers in time series using Tukey outlier detection.

Identifying and removing outliers from PV sensor time series data allows for more accurate data analysis. In this
example, we demonstrate how to use pvanalytics.quality.outliers. tukey() to identify and filter out outliers
in a time series.

import pvanalytics

from pvanalytics.quality.outliers import tukey
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, we read in the ac_power_inv_7539_outliers example. Min-max normalized AC power is represented by the
“value_normalized” column. There is a boolean column “outlier” where inserted outliers are labeled as True, and
all other values are labeled as False. These outlier values were inserted manually into the data set to illustrate out-
lier detection by each of the functions. We use a normalized time series example provided by the PV Fleets Initia-
tive. This example is adapted from the DuraMAT DataHub clipping data set: https://datahub.duramat.org/dataset/
inverter-clipping-ml-training-set-real-data

3.2. Example Gallery 43

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data
https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent

ac_power_file_1 = pvanalytics_dir / 'data' / 'ac_power_inv_7539_outliers.csv'
data = pd.read_csv(ac_power_file_1, index_col=0, parse_dates=True)
print(data.head(10))

value_normalized outlier
timestamp
2017-04-10 19:15:00+00:00
2017-04-10 19:30:00+00:00
2017-04-11 06:15:00+00:00
2017-04-11 06:45:00+00:00
2017-04-11 07:00:00+00:00
2017-04-11 07:15:00+00:00
2017-04-11 07:30:00+00:00
2017-04-11 07:45:00+00:00
2017-04-11 08:00:00+00:00
2017-04-11 08:15:00+00:00

.000002 False
.000000 False
.000000 False
.033103 False
.043992 False
.055615 False
.110986 False
.184948 False
.276810 False
.358061 False

(= I — I — I — I — I — I — I — I =

We then use pvanalytics.quality.outliers. tukey() to identify outliers in the time series, and plot the data
with the tukey outlier mask.

tukey_outlier_mask = tukey(data=data['value_normalized'],
k=0.5)
data['value_normalized'].plot()
data.loc[tukey_outlier_mask, 'value_normalized'].plot(ls='", marker='o")
plt.legend(labels=["AC Power", "Detected Outlier"])
plt.xlabel("Date")
plt.ylabel("Normalized AC Power")
plt.tight_layout()
plt.show()

44 Chapter 3. Contents

PVAnalytics

2.0 4] — AC Power
o Detected Outlier

1.5~

1.0~ F‘I !- ﬂ

0.5 4

Normalized AC Power

-0.5 | o
T T T T T T T T T T
gy B ©
Tgwx o Y Y N SR N oy N Ny
A0 40 40> 0% 40 0% 0% 40> 0% g0t
Date

Total running time of the script: (0 minutes 0.211 seconds)

3.2.3 Hampel Outlier Detection

Identifying outliers in time series using Hampel outlier detection.

Identifying and removing outliers from PV sensor time series data allows for more accurate data analysis. In this
example, we demonstrate how to use pvanalytics.quality.outliers.hampel () to identify and filter out outliers
in a time series.

import pvanalytics

from pvanalytics.quality.outliers import hampel
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, we read in the ac_power_inv_7539_outliers example. Min-max normalized AC power is represented by the
“value_normalized” column. There is a boolean column “outlier” where inserted outliers are labeled as True, and
all other values are labeled as False. These outlier values were inserted manually into the data set to illustrate out-
lier detection by each of the functions. We use a normalized time series example provided by the PV Fleets Initia-
tive. This example is adapted from the DuraMAT DataHub clipping data set: https://datahub.duramat.org/dataset/
inverter-clipping-ml-training-set-real-data

3.2. Example Gallery 45

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data
https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent

ac_power_file_1 = pvanalytics_dir / 'data' / 'ac_power_inv_7539_outliers.csv'
data = pd.read_csv(ac_power_file_1, index_col=0, parse_dates=True)
print(data.head(10))

value_normalized outlier
timestamp
2017-04-10 19:15:00+00:00
2017-04-10 19:30:00+00:00
2017-04-11 06:15:00+00:00
2017-04-11 06:45:00+00:00
2017-04-11 07:00:00+00:00
2017-04-11 07:15:00+00:00
2017-04-11 07:30:00+00:00
2017-04-11 07:45:00+00:00
2017-04-11 08:00:00+00:00
2017-04-11 08:15:00+00:00

.000002 False
.000000 False
.000000 False
.033103 False
.043992 False
.055615 False
.110986 False
.184948 False
.276810 False
.358061 False

(= I — I — I — I — I — I — I — I =

We then use pvanalytics.quality.outliers.hampel() to identify outliers in the time series, and plot the data
with the hampel outlier mask.

hampel_outlier_mask = hampel(data=data['value_normalized'],
window=10)
data['value_normalized'].plot()
data.loc[hampel_outlier_mask, 'value_normalized'].plot(ls='"', marker='o'")
plt.legend(labels=["AC Power", "Detected Outlier"])
plt.xlabel("Date")
plt.ylabel("Normalized AC Power")
plt.tight_layout()
plt.show()

46 Chapter 3. Contents

PVAnalytics

2.0 4] — AC Power
o Detected Outlier

1.5 A
L]
@
g
1.0 A
2 [1 [
=
'H]
N
T 0.5 -
E
=]
) \)
0.0 - J l
-0.5 | o
) B q 9 0
.G -ﬁ' .G -ﬁ' .G -ﬁ' “‘I.G -ﬁ' “‘I.Ghdx .G -ﬁ' .G&-l'x .G -ﬁ' “‘I.Ghdx “‘I- h-:]’
A0 40 40> 0% 40 0% 0% 40> 0% g0t

Date

Total running time of the script: (0 minutes 0.329 seconds)

3.2.4 Flag Sunny Days for a Fixed-Tilt System

Flag sunny days for a fixed-tilt PV system.

Identifying and masking sunny days for a fixed-tilt system is important when performing future analyses that require
filtered sunny day data. For this example we will use data from the fixed-tilt NREL SERF East system located on the
NREL campus in Colorado, USA, and generate a sunny day mask. This data set is publicly available via the PVDAQ
database in the DOE Open Energy Data Initiative (OEDI) (https://data.openei.org/submissions/4568), as system ID 50.
This data is timezone-localized.

import pvanalytics

from pvanalytics.features import daytime as day

from pvanalytics.features.orientation import fixed_nrel
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the NREL SERF East fixed-tilt system. This data set contains 15-minute interval AC power
data.

3.2. Example Gallery 47

https://data.openei.org/submissions/4568

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent
file = pvanalytics_dir / 'data' / 'serf_east_15min_ac_power.csv'
data = pd.read_csv(file, index_col=0, parse_dates=True)

Mask day-night periods using the pvanalytics. features.daytime.power_or_irradiance() function. Then
apply pvanalytics. features.orientation. fixed_nrel() to the AC power stream and mask the sunny days in
the time series.

daytime_mask = day.power_or_irradiance(datal'ac_power'])

fixed_sunny_days = fixed_nrel(data['ac_power'],
daytime_mask)

Plot the AC power stream with the sunny day mask applied to it.

data['ac_power'].plot()
data.loc[fixed_sunny_days, 'ac_power'].plot(ls='"', marker='.")
plt.legend(labels=["AC Power", "Sunny Day"],
loc="upper left")
plt.xlabel("Date")
plt.ylabel ("AC Power (kW)")
plt.tight_layout()
plt.show()

AC Power
+ Sunny Day

5000

4000 ‘

] ’]
3000 - !

2000 1 i

AC Power (kw)

1000 - i)

10 11 12 13 14 15 16
Aug
2016

Date

48 Chapter 3. Contents

PVAnalytics

Total running time of the script: (0 minutes 0.272 seconds)

3.2.5 Flag Sunny Days for a Tracking System

Flag sunny days for a single-axis tracking PV system.

Identifying and masking sunny days for a single-axis tracking system is important when performing future analyses that
require filtered sunny day data. For this example we will use data from the single-axis tracking NREL Mesa system
located on the NREL campus in Colorado, USA, and generate a sunny day mask. This data set is publicly available via
the PVDAQ database in the DOE Open Energy Data Initiative (OEDI) (https://data.openei.org/submissions/4568), as
system ID 50. This data is timezone-localized.

import pvanalytics

from pvanalytics.features import daytime as day

from pvanalytics.features.orientation import tracking_nrel
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the NREL Mesa 1-axis tracking system. This data set contains 15-minute interval AC power
data.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
file = pvanalytics_dir / 'data' / 'nrel_laxis_tracker_mesa_ac_power.csv'
data = pd.read_csv(file, index_col=0, parse_dates=True)

Mask day-night periods using the pvanalytics. features.daytime.power_or_irradiance() function. Then
apply pvanalytics. features.orientation. tracking_nrel () to the AC power stream and mask the sunny days
in the time series.

daytime_mask = day.power_or_irradiance(datal'ac_power'])

tracking_sunny_days = tracking nrel(data['ac_power'],
daytime_mask)

Plot the AC power stream with the sunny day mask applied to it.

data['ac_power'].plot()
data.loc[tracking_sunny_days, 'ac_power'].plot(ls='"', marker='.")
plt.legend(labels=["AC Power", "Sunny Day"],
loc="upper left")
plt.xlabel("Date")
plt.ylabel ("AC Power (kW)")
plt.tight_layout()
plt.show()

3.2. Example Gallery 49

https://data.openei.org/submissions/4568

PVAnalytics

AC Power
300] ¢ Sunny Day
y
]]
]]
250 - ! b
y ! !
2 2001] |
'\-: y
L8 s b
ng_ 150 4 !
% ' '
y
100 | , .
L]
]
5{)]]
L M |
T T T T T 1
25 26 27 28 29 30
Jun
2010
Date

Total running time of the script: (0 minutes 0.926 seconds)

3.2.6 Clear-Sky Detection

Identifying periods of clear-sky conditions using measured irradiance.

Identifying and filtering for clear-sky conditions is a useful way to reduce noise when analyzing measured data. This
example shows how to use pvanalytics. features.clearsky.reno() to identify clear-sky conditions using mea-
sured GHI data. For this example we’ll use GHI measurements from NREL in Golden CO.

import pvanalytics

from pvanalytics.features.clearsky import reno
import pvlib

import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in the GHI measurements. For this example we’ll use an example file included in pvanalytics covering a
single day, but the same process applies to data of any length.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
ghi_file = pvanalytics_dir / 'data' / 'midc_bms_ghi_20220120.csv'
data = pd.read_csv(ghi_file, index_col=0, parse_dates=True)

(continues on next page)

50 Chapter 3. Contents

PVAnalytics

(continued from previous page)

or you can fetch the data straight from the source using pvlib:
date = pd.to_datetime('2022-01-20")
data = pvlib.iotools.read _midc_raw_data_from_nrel('BMS', date, date)

measured_ghi = data['Global CMP22 (vent/cor) [W/mA2]'"]

Now model clear-sky irradiance for the location and times of the measured data:

location = pvlib.location.Location(39.742, -105.18)
clearsky = location.get_clearsky(data.index)
clearsky_ghi = clearsky['ghi']

Finally, use pvanalytics. features.clearsky.reno() to identify measurements during clear-sky conditions:

is_clearsky = reno(measured_ghi, clearsky_ghi)

clear-sky times indicated in black
measured_ghi.plot()

measured_ghi[is_clearsky].plot(ls='"', marker='o', ms=2, c='k")
plt.ylabel('Global Horizontal Irradiance [W/m2]"')
plt.show()

500 -

400 -

300 -

200 -

100

Global Horizontal Irradiance [W/m2]

0

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
20-Jan

Total running time of the script: (0 minutes 0.242 seconds)

3.2. Example Gallery 51

PVAnalytics

3.2.7 Interpolated Data Periods

Identifying periods in a time series where the data has been linearly interpolated.

Identifying periods where time series data has been linearly interpolated and removing these periods may help to
reduce noise when performing future data analysis. This example shows how to use pvanalytics.quality.gaps.
interpolation_diff (), which identifies and masks linearly interpolated periods.

import pvanalytics

from pvanalytics.quality import gaps
import matplotlib.pyplot as plt
import pandas as pd

import pathlib

First, we import the AC power data stream that we are going to check for interpolated periods. The time series we
download is a normalized AC power time series from the PV Fleets Initiative, and is available via the DuraMAT
DataHub: https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data. This data set has a Pandas
DateTime index, with the min-max normalized AC power time series represented in the ‘value_normalized’ column.
There is also an “interpolated_data_mask” column, where interpolated periods are labeled as True, and all other data
is labeled as False. The data is sampled at 15-minute intervals.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent

file = pvanalytics_dir / 'data' / 'ac_power_inv_2173_interpolated_data.csv'

data = pd.read_csv(file, index_col=0, parse_dates=True)

data = data.asfreq("15T")

data['value_normalized'].plot()

data.loc[data["interpolated_data_mask"], "value_normalized"].plot(ls="",
marker="'.")

plt.legend(labels=["AC Power", "Interpolated Data"])

plt.xlabel("Date")

plt.ylabel ("Normalized AC Power")

plt.tight_layout()

plt.show()

52 Chapter 3. Contents

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

0.8 1 AC Power

» Interpolated Data
0.7
0.6

Normalized AC Power

Date

Now, we use pvanalytics.quality.gaps.interpolation_diff() to identify linearly interpolated periods in
the time series. We re-plot the data with this mask. Please note that nighttime periods generally consist of repeat-
ing 0 values; this means that these periods can be linearly interpolated. Consequently, these periods are flagged by
pvanalytics.quality.gaps.interpolation_diff().

detected_interpolated_data_mask = gaps.interpolation_diff(
data['value_normalized'])

data['value_normalized'].plot()

data.loc[detected_interpolated_data_mask,

"value_normalized"].plot(ls="", marker='.")

plt.legend(labels=["AC Power", "Detected Interpolated Data"])

plt.xlabel("Date")

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

3.2. Example Gallery 53

PVAnalytics

0.8 1 AC Power

» Detected Interpolated Data
0.7
0.6

Normalized AC Power

Date

Total running time of the script: (0 minutes 0.820 seconds)

3.2.8 Clearsky Limits for Daily Insolation

Checking the clearsky limits for daily insolation data.

Identifying and filtering out invalid irradiance data is a useful way to reduce noise during analysis. In this example, we
use pvanalytics.quality.irradiance.daily_insolation_limits() to determine when the daily insolation
lies between a minimum and a maximum value. Irradiance measurements and clear-sky irradiance on each day are
integrated with the trapezoid rule to calculate daily insolation. For this example we will use data from the RMIS
weather system located on the NREL campus in Colorado, USA.

import pvanalytics

from pvanalytics.quality.irradiance import daily_insolation_limits
import pvlib

import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the RMIS NREL system. This data set contains 5-minute right-aligned data. It includes POA,
GHI, DNI, DHI, and GNI measurements.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
rmis_file = pvanalytics_dir / 'data' / 'irradiance_RMIS_NREL.csv'

(continues on next page)

54 Chapter 3. Contents

PVAnalytics

(continued from previous page)

data = pd.read_csv(rmis_file, index_col=0, parse_dates=True)
Make the datetime index tz-aware.
data.index = data.index.tz_localize("Etc/GMT+7")

Now model clear-sky irradiance for the location and times of the measured data:

location = pvlib.location.Location(39.7407, -105.1686)
clearsky = location.get_clearsky(data.index)

Use pvanalytics.quality.irradiance.daily_insolation_Ilimits() toidentify if the daily insolation lies be-
tween a minimum and a maximum value. Here, we check GHI irradiance field ‘irradiance_ghi__7981’. pvanalytics.
quality.irradiance.daily_insolation_Ilimits() returns a mask that identifies data that falls between lower
and upper limits. The defaults (used here) are upper bound of 125% of clear-sky daily insolation, and lower bound of
40% of clear-sky daily insolation.

daily_insolation_mask = daily_insolation_limits(data['irradiance_ghi__7981'],
clearsky['ghi'])

Plot the ‘irradiance_ghi_ 7981’ data stream and its associated clearsky GHI data stream. Mask the GHI time series by
its daily_insolation_mask.

data['irradiance_ghi__7981"'].plot()
clearsky['ghi'].plot()
data.loc[daily_insolation_mask, 'irradiance_ghi__7981'].plot(ls="'"', marker='."')
plt.legend(labels=["RMIS GHI", "Clearsky GHI",
"Within Daily Insolation Limit"],

loc="upper left")
plt.xlabel("Date")
plt.ylabel ("GHI (W/m*2)")
plt.tight_layout()
plt.show()

3.2. Example Gallery 55

PVAnalytics

—— RMIS GHI
700 Clearsky GHI
» Within Daily Insolation Limit
600
500 A
~
L4
E 400 -
2
5 300 A \
d
1
200 + 1
]
1004 :
. l
' 02 03 04 05 06
Feb
2019
Date

Total running time of the script: (0 minutes 0.258 seconds)

3.2.9 Data Shift Detection & Filtering

Identifying data shifts/capacity changes in time series data

This example covers identifying data shifts/capacity changes in a time series and extracting the longest time
series segment free of these shifts, using pvanalytics.quality.data_shifts.detect_data_shifts() and
pvanalytics.quality.data_shifts.get_longest_shift_segment_dates().

import pvanalytics

import pandas as pd

import matplotlib.pyplot as plt

from pvanalytics.quality import data_shifts as ds
import pathlib

As an example, we load in a simulated pvlib AC power time series with a single changepoint, occurring on October 28,
2015.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
data_shift_file = pvanalytics_dir / 'data' / 'pvlib_data_shift.csv'
df = pd.read_csv(data_shift_file)

df.index = pd.to_datetime(df['timestamp'])

(continues on next page)

56 Chapter 3. Contents

PVAnalytics

(continued from previous page)

df['value'].plot()
print("Changepoint at: " + str(df[df['label'] == 1].index[0]))

40000 -
30000 -
20000 -
10000 -
D -

T T T T T T T

% 6 1 % 5 N A

20> 20> 20> 20> 20> AOF 2Ok
timestamp

Changepoint at: 2015-10-28 00:00:00

Now we run the data shift algorithm (with default parameters) on the data stream, using pvanalytics.quality.
data_shifts.detect_data_shifts(). We plot the predicted time series segments, based on algorithm results.

shift_mask = ds.detect_data_shifts(df['value'])

shift_list = list(df[shift_mask].index)

edges = [df.index[0]] + shift_list + [df.index[-1]]

fig, ax = plt.subplots()

for (st, ed) in zip(edges[:-1], edges[1:]):
ax.plot(df.loc[st:ed, "value"])

plt.show()

We zoom in around the changepoint to more closely show the data shift. Time
series segments pre- and post-shift are color-coded.

edges = [pd.to_datetime("10-15-2015")] + shift_list + \
[pd.to_datetime("11-15-2015")]
fig, ax = plt.subplots()

(continues on next page)

3.2. Example Gallery 57

PVAnalytics

(continued from previous page)

for (st, ed) in zip(edges[:-1], edges[1:]):
ax.plot(df.loc[st:ed, "value"])
plt.xticks(rotation=45)

plt.show()
40000 4
30000
20000
10000 -
D -
T T T T T T T
2015 2016 2017 2018 2019 2020 2021
58 Chapter 3. Contents

PVAnalytics

30000 A

25000 ~

20000

15000 -

10000 -

5000 ~

ROIY SR Y, <A RN A N
,\r() ,\r‘-'.) ,\rﬁ ,\rﬁ ,\} ,\"\ ,\} 4\"\
. S S S S S S S ey
We filter the time series by the detected changepoints, taking the longest continuous segment free of data shifts, using
pvanalytics.quality.data_shifts.get_longest_shift_segment_dates(). Thetrimmed time series is then

plotted.

start_date, end_date = ds.get_longest_shift_segment_dates(df['value'])
df['value'][start_date:end_date].plot()
plt.show()

3.2. Example Gallery 59

PVAnalytics

timestamp

Total running time of the script: (0 minutes 2.322 seconds)

3.2.10 Clearsky Limits for Irradiance Data

Checking the clearsky limits of irradiance data.

Identifying and filtering out invalid irradiance data is a useful way to reduce noise during analysis. In this example,
we use pvanalytics.quality.irradiance.clearsky_limits() to identify irradiance values that do not exceed
a limit based on a clear-sky model. For this example we will use GHI data from the RMIS weather system located on
the NREL campus in CO.

import pvanalytics

from pvanalytics.quality.irradiance import clearsky_limits
from pvanalytics.features.daytime import power_or_irradiance
import pvlib

import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the RMIS NREL system. This data set contains 5-minute right-aligned POA, GHI, DNI, DHI,
and GNI measurements, but only the GHI is relevant here.

pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
rmis_file = pvanalytics_dir / 'data' / 'irradiance_RMIS_NREL.csv'

(continues on next page)

60 Chapter 3. Contents

PVAnalytics

(continued from previous page)

data = pd.read_csv(rmis_file, index_col=0, parse_dates=True)
freq = '5T'

Make the datetime index tz-aware.

data.index = data.index.tz_localize("Etc/GMT+7")

Now model clear-sky irradiance for the location and times of the measured data. You can do this using pvlib.
location.Location.get_clearsky(), using the lat-long coordinates associated the RMIS NREL system.

location = pvlib.location.Location(39.7407, -105.1686)
clearsky = location.get_clearsky(data.index)

Use pvanalytics.quality.irradiance.clearsky_limits(). Here, we check GHI data in field ‘irradi-
ance_ghi__7981°. pvanalytics.quality.irradiance.clearsky_limits() returns a mask that identifies data
that falls between lower and upper limits. The defaults (used here) are upper bound of 110% of clear-sky GHI, and no
lower bound.

clearsky_limit_mask = clearsky_limits(data['irradiance_ghi__7981'],
clearsky['ghi'])

Mask nighttime values in the GHI time series using the pvanalytics.features.daytime.
power_or_irradiance () function. We will then remove nighttime values from the GHI time series.

day_night_mask = power_or_irradiance(series=data['irradiance_ghi__7981"'],
freq=freq)

Plot the ‘irradiance_ghi__7981 data stream and its associated clearsky GHI data stream. Mask the GHI time series by
its clearsky_limit_mask for daytime periods. Please note that a simple Ineichen model with static monthly turbidities
isn’t always accurate, as in this case. Other models that may provide better clear-sky estimates include McClear or
PSM3.

data['irradiance_ghi__7981"'].plot()
clearsky['ghi'].plot()
data.loc[clearsky_limit_mask & day_night_mask][
"irradiance_ghi__7981'].plot(ls="", marker='.")
plt.legend(labels=["RMIS GHI", "Clearsky GHI",
"Under Clearsky Limit"],
loc="upper left")
plt.xlabel("Date™)
plt.ylabel ("GHI (W/mr2)")
plt.tight_layout()
plt.show()

3.2. Example Gallery 61

https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.location.Location.get_clearsky.html#pvlib.location.Location.get_clearsky
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.location.Location.get_clearsky.html#pvlib.location.Location.get_clearsky

PVAnalytics

—— RMIS GHI
700 Clearsky GHI
» Under Clearsky Limit
600
500 A
~
L4
E 400 -
2
5 300 A \
200 +
100 + {
0 ———J L 2 l

02 03 04 05 06
Feb
2019

Date

Total running time of the script: (0 minutes 0.422 seconds)

3.2.11 Stale Data Periods

Identifying stale data periods in a time series.

Identifing and removing stale, or consecutive repeating, values in time series data reduces noise when perform-
ing data analysis. This example shows how to use two PVAnalytics functions, pvanalytics.quality.gaps.
stale_values_diff() and pvanalytics.quality.gaps.stale_values_round(), to identify and mask stale
data periods in time series data.

import pvanalytics

from pvanalytics.quality import gaps
import matplotlib.pyplot as plt
import pandas as pd

import pathlib

First, we import the AC power data stream that we are going to check for stale data periods. The time series we
download is a normalized AC power time series from the PV Fleets Initiative, and is available via the DuraMAT
DataHub: https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data This data set has a Pandas
DateTime index, with the min-max normalized AC power time series represented in the ‘value_normalized’ column.
Additionally, there is a “stale_data_mask” column, where stale periods are labeled as True, and all other data is labeled
as False. The data is sampled at 15-minute intervals.

62 Chapter 3. Contents

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent

file = pvanalytics_dir / 'data' / 'ac_power_inv_2173_stale_data.csv'
data = pd.read_csv(file, index_col=0, parse_dates=True)

data = data.asfreq("15T")

data['value_normalized'].plot()

data.loc[data["stale_data_mask"], "value_normalized"].plot(ls='"', marker='.")
plt.legend(labels=["AC Power", "Inserted Stale Data"])
plt.xlabel("Date™)

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

0.8 1 AC Power

» Inserted Stale Data

0.7 1

r

0.5~

0.4 1

0.3 . “

0.2 1

Normalized AC Power

:_::-l r || [| W | -

Jan
2011

Date

Now, we use pvanalytics.quality.gaps.stale_values_diff() to identify stale values in data. We visualize
the detected stale periods graphically. Please note that nighttime periods generally contain consecutive repeating 0
values, which are flagged by pvanalytics.quality.gaps.stale_values_diff().

stale_data_mask = gaps.stale_values_diff(data['value_normalized'])
data['value_normalized'].plot()

data.loc[stale_data_mask, "value_normalized"].plot(ls='"', marker='."')
plt.legend(labels=["AC Power", "Detected Stale Data"])
plt.xlabel("Date™)

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

3.2. Example Gallery 63

PVAnalytics

0.8 1 AC Power

» Detected Stale Data

0.7 1

.

0.5~

0.4 1

0.3

Normalized AC Power

0.2 1

0.1 1 [
| |l i U

Jan
2011

Date

Now, we use pvanalytics.quality.gaps.stale_values_round() to identify stale values in data, using rounded
data. This function yields similar results as pvanalytics.quality.gaps.stale_values_diff(), except it
looks for consecutive repeating data that has been rounded to a settable decimals place. Please note that night-
time periods generally contain consecutive repeating 0 values, which are flagged by pvanalytics.quality.gaps.
stale_values_round().

stale_data_round_mask = gaps.stale_values_round(data['value_normalized'])
data['value_normalized'].plot()

data.loc[stale_data_round_mask, "value_normalized"].plot(ls='", marker='.")
plt.legend(labels=["AC Power", "Detected Stale Data"])

plt.xlabel("Date")

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

64 Chapter 3. Contents

PVAnalytics

0.8 1 AC Power

» Detected Stale Data

0.7 1

r

0.5~

0.4 1

0.3 . “

0.2 1

Normalized AC Power

oAl AU

Jan
2011

Date

Total running time of the script: (0 minutes 1.612 seconds)

3.2.12 Clipping Detection

Identifying clipping periods using the PVAnalytics clipping module.

Identifying and removing clipping periods from AC power time series data aids in generating more accurate degradation
analysis results, as using clipped data can lead to under-predicting degradation. In this example, we show how to use
pvanalytics. features.clipping.geometric() to mask clipping periods in an AC power time series. We use a
normalized time series example provided by the PV Fleets Initiative, where clipping periods are labeled as True, and
non-clipping periods are labeled as False. This example is adapted from the DuraMAT DataHub clipping data set:
https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

import pvanalytics

from pvanalytics.features.clipping import geometric
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

import numpy as np

First, read in the ac_power_inv_7539 example, and visualize a subset of the clipping periods via the “label” mask
column.

3.2. Example Gallery 65

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent
ac_power_file_1 = pvanalytics_dir / 'data' / 'ac_power_inv_7539.csv’
data = pd.read_csv(ac_power_file_1, index_col=0, parse_dates=True)
data['label'] = data['label'].astype(bool)

This is the known frequency of the time series. You may need to infer
the frequency or set the frequency with your AC power time series.
freq = "15T"

data['value_normalized'].plot()

data.loc[data['label'], 'value_normalized'].plot(ls='"', marker='o"')

plt.legend(labels=["AC Power", "Labeled Clipping"],
title="Clipped")

plt.xticks(rotation=20)

plt.xlabel("Date")

plt.ylabel("Normalized AC Power")

plt.tight_layout()

plt.show()

1.0 - F W » n
0.8 j
]
=
£ 0.6 - |
E Clipped
T —— AC Power
L ® Labeled Clipping
T 0.4-
E
o
=
0.2 1
0ol — L A I U I B I L
aVE 08V a8 15 3830 s a-Y &1'3'
1p3j of 1ﬂﬁj © 1ﬂﬁj © 1ﬂ3ﬁ G-lﬁﬂj o 1ﬂ3ﬁ o 1ﬂ3ﬁ 0 1ﬂ3ﬁ o 1ﬂ3ﬁ 0 1ﬂ3ﬂ 0
Date

Now, use pvanalytics. features.clipping.geometric() to identify clipping periods in the time series. Re-plot
the data subset with this mask.

predicted_clipping_mask = geometric(ac_power=datal['value_normalized'],
freq=£freq)

(continues on next page)

66 Chapter 3. Contents

PVAnalytics

(continued from previous page)

data['value_normalized'].plot()
data.loc[predicted_clipping_mask, 'value_normalized'].plot(ls='"', marker='o")
plt.legend(labels=["AC Power", "Detected Clipping"],
title="Clipped")
plt.xticks(rotation=20)
plt.xlabel("Date™)
plt.ylabel("Normalized AC Power')
plt.tight_layout()
plt.show()

1.0 F ﬂ " N
0.8 1 j
o
=
£ 0.6 - |
E Clipped
o —— AC Power
o ® Detected Clipping
T 0.4
E
=]
=z
0.2 +
0ol — L A I U I B I L
) &,'ﬂ.) &,'3,1) &,1'5) &,-ﬁt) &,15) &,16) &,ﬂ) &,1‘6) &,fi) &,10
1{311 ° 1{311 ° oV ° 1{311 ° 1{311 ° 1{311 ° 1{311 ° oV 1{311 ° 1{311 °
Date

Compare the filter results to the ground-truth labeled data side-by-side, and generate an accuracy metric.

acc = 100 * np.sum(np.equal(data.label,
predicted_clipping_mask))/len(data.label)
print("Overall model prediction accuracy: " + str(round(acc, 2)) + "%")

Overall model prediction accuracy: 99.2%

Total running time of the script: (0 minutes 0.436 seconds)

3.2. Example Gallery

67

PVAnalytics

3.2.13 QCrad Limits for Irradiance Data

Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Identifying and filtering out invalid irradiance data is a useful way to reduce noise during analysis. In this example,
we use pvanalytics.quality.irradiance.check_irradiance_limits_qgcrad() to test for physical limits on
GHI, DHI or DNI using the QCRad criteria. For this example we will use data from the RMIS weather system located
on the NREL campus in Colorado, USA.

import pvanalytics

from pvanalytics.quality.irradiance import check_irradiance_limits_qcrad
import pvlib

import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the RMIS NREL system. This data set contains 5-minute right-aligned data. It includes POA,
GHI, DNI, DHI, and GNI measurements.

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent
rmis_file = pvanalytics_dir / 'data' / 'irradiance_RMIS_NREL.csv'
data = pd.read_csv(rmis_file, index_col=0, parse_dates=True)

Now generate solar zenith estimates for the location, based on the data’s time zone and site latitude-longitude coordi-
nates. This is done using the pvlib.solarposition.get_solarposition() function.

latitude = 39.742

longitude = -105.18

time_zone = "Etc/GMT+7"

data = data.tz_localize(time_zone)

solar_position = pvlib.solarposition.get_solarposition(data.index,
latitude,
longitude)

Generate the estimated extraterrestrial radiation for the time series, referred to as dni_extra. This is done using the
pvlib.irradiance.get_extra_radiation() function.

dni_extra = pvlib.irradiance.get_extra_radiation(data.index)

Use pvanalytics.quality.irradiance.check_irradiance_limits_qgcrad() to generate the QCRAD irradi-
ance limit mask

gcrad_limit_mask = check_irradiance_limits_qcrad(
solar_zenith=solar_position['zenith'],
dni_extra=dni_extra,
ghi=data['irradiance_ghi__7981'],
dhi=data['irradiance_dhi__7983'],
dni=data['irradiance_dni__7982"])

Plot the ‘irradiance_ghi__ 7981’ data stream with its associated QCRAD limit mask.

data['irradiance_ghi__7981"'].plot()
data.loc[gcrad_limit_mask[0], 'irradiance_ghi__7981'].plot(ls="", marker='.")
plt.legend(labels=["RMIS GHI", "Within QCRAD Limits"],

loc="upper left")

(continues on next page)

68 Chapter 3. Contents

https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.solarposition.get_solarposition.html#pvlib.solarposition.get_solarposition
https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.irradiance.get_extra_radiation.html#pvlib.irradiance.get_extra_radiation

PVAnalytics

(continued from previous page)

plt.xlabel("Date")
plt.ylabel ("GHI (W/mA2)")
plt.tight_layout()

plt.show()
RMIS GHI
7004 * Within QCRAD Limits
600 -
500 4
g | :
E ap0 -] i
-?-... 1 1]
— 1 y 1
E b b : 1
G 300 - : L 1 1
b :]
B -
200 4 b : .]
1 ; b :
100 - . : ! ;
[]
] i |
0 I ——
' n'zb 03 04 05 06
Fe
2019
Date

Plot the ‘irradiance_dhi__7983 data stream with its associated QCRAD limit mask.

data['irradiance_dhi__7983"'].plot()
data.loc[gcrad_limit_mask[1], 'irradiance_dhi__7983'].plot(ls=""', marker='.")
plt.legend(labels=["RMIS DHI", "Within QCRAD Limits"],
loc="upper left")
plt.xlabel("Date")
plt.ylabel ("DHI (W/mA2)")
plt.tight_layout()
plt.show()

3.2. Example Gallery

69

PVAnalytics

300 4 RMIS DHI
« Within QCRAD Limits
250 4 .
.l
:r
]
200 - 8
™ 1
(E [3
S 150 | §
s | |
a]] . .
100 - .
p b
: b
' E
504 | -
] 3]
!]
L p
D-TIIHI* ‘uu-
' n'zb 03 04 05 06
Fe
2019
Date

Plot the ‘irradiance_dni__7982’ data stream with its associated QCRAD limit mask.

data['irradiance_dni__7982"'].plot()
data.loc[gcrad_limit_mask[2], 'irradiance_dni__7982'].plot(ls="", marker='.")
plt.legend(labels=["RMIS DNI", "Within QCRAD Limits"],
loc="upper left")
plt.xlabel("Date")
plt.ylabel ("DNI (W/mA2)")
plt.tight_layout()
plt.show()

70 Chapter 3. Contents

PVAnalytics

RMIS DNI
10007 . within QCRAD Limits

800 - ‘ . :
1 4 1
b y 1
: : !
S | -

n 4 1

cE 600 : , | :

= ' '
; ' r b b

(] 400 A b 1

']

[]
]
200 4
] | L
]
UH h H
' 02 03 04 05 06
Feb
2019

Date

Total running time of the script: (0 minutes 0.598 seconds)

3.2.14 Missing Data Periods

Identifying days with missing data using a “completeness” score metric.

Identifying days with missing data and filtering these days out reduces noise when performing data analysis. This exam-
ple shows how to use a daily data “completeness” score to identify and filter out days with missing data. This includes
using pvanalytics.quality.gaps.completeness_score(), pvanalytics.quality.gaps.complete(), and
pvanalytics.quality.gaps.trim_incomplete().

import pvanalytics

from pvanalytics.quality import gaps
import matplotlib.pyplot as plt
import pandas as pd

import pathlib

First, we import the AC power data stream that we are going to check for completeness. The time series we download
is a normalized AC power time series from the PV Fleets Initiative, and is available via the DuraMAT DataHub:
https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data. This data set has a Pandas DateTime
index, with the min-max normalized AC power time series represented in the ‘value_normalized’ column. The data is
sampled at 15-minute intervals. This data set does contain NaN values.

3.2. Example Gallery 71

https://datahub.duramat.org/dataset/inverter-clipping-ml-training-set-real-data

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent
file = pvanalytics_dir / 'data' / 'ac_power_inv_2173.csv'
data = pd.read_csv(file, index_col=0, parse_dates=True)
data = data.asfreq("15T")

Now, we use pvanalytics.quality.gaps.completeness_score() to get the percentage of daily data that isn’t
NaN. This percentage score is calculated as the total number of non-NA values over a 24-hour period, meaning that
nighttime values are expected.

data_completeness_score = gaps.completeness_score(datal'value_normalized'])

Visualize data completeness score as a time series.
data_completeness_score.plot()

plt.xlabel("Date")

plt.ylabel("Daily Completeness Score (Fractional)")
plt.tight_layout()

plt.show()

1.0+

0.8

0.6

0.4 1

0.2 1

Daily Completeness Score (Fractional)

0.0 1

Jan
2011

Date

We mask complete days, based on daily completeness score, using pvanalytics.quality.gaps.complete().

min_completeness = 0.333
daily_completeness_mask = gaps.complete(data['value_normalized'],
minimum_completeness=min_completeness)

(continues on next page)

72 Chapter 3. Contents

PVAnalytics

(continued from previous page)

Mask complete days, based on daily completeness score
data_completeness_score.plot()

data_completeness_score.loc[daily_completeness_mask].plot(ls="", marker='.")
data_completeness_score.loc[~daily_completeness_mask].plot(ls=""', marker='.")
plt.axhline(y=min_completeness, color='r', linestyle='--")

plt.legend(labels=["Completeness Score", "Threshold met",
"Threshold not met", "Completeness Threshold (.33)"],
loc="upper left")
plt.xlabel("Date")
plt.ylabel("Daily Completeness Score (Fractional)")
plt.tight_layout()
plt.show()

1.0+

Completeness Score

s Threshold met

s Threshold not met

0.8 1 ——- Completeness Threshold (.33)

0.6

Daily Completeness Score (Fractional)

Jan
2011

Date

We trim the time series based on the completeness score, where the time series must have at least 10 consecutive days of
data that meet the completeness threshold. This is done using pvanalytics.quality.gaps.trim_incomplete().

number_consecutive_days = 10

completeness_trim_mask = gaps.trim_incomplete(data['value_normalized'],
days=number_consecutive_days)

Re-visualize the time series with the data masked by the trim mask

data[completeness_trim_mask]['value_normalized'].plot()

data[~completeness_trim mask]['value_normalized'].plot()

plt.legend(labels=[True, False],

(continues on next page)

3.2. Example Gallery 73

PVAnalytics

(continued from previous page)

title="Daily Data Passing")
plt.xlabel("Date")
plt.ylabel("Normalized AC Power")
plt.tight_layout()
plt.show()

0.8 1 Daily Data Passing
—— True
0.7 1 —— False

0.6

0.5~

Normalized AC Power
o
Y
i
e e—
Zi—
——

0.3
0.2 1
0.1 - |
0.0 4+ r ._I.JJ .
03 10 17 24
Jan
2011
Date

/home/docs/checkouts/readthedocs.org/user_builds/pvanalytics/checkouts/v0.1.2/

—pvanalytics/quality/gaps.py:416: FutureWarning: Indexing a timezone-aware..

—DatetimeIndex with a timezone-naive datetime is deprecated and will raise KeyError in.

—a future version. Use a timezone-aware object instead.
mask.loc[start.date():end.date()] = True

Total running time of the script: (0 minutes 1.162 seconds)

74 Chapter 3. Contents

PVAnalytics

3.2.15 QCrad Consistency for Irradiance Data

Check consistency of GHI, DHI and DNI using QCRad criteria.

Identifying and filtering out invalid irradiance data is a useful way to reduce noise during analysis. In this example, we
use pvanalytics.quality.irradiance.check_irradiance_consistency_gcrad() to check the consistency
of GHI, DHI and DNI data using QCRad criteria. For this example we will use data from the RMIS weather system
located on the NREL campus in Colorado, USA.

import pvanalytics

from pvanalytics.quality.irradiance import check_irradiance_consistency_gcrad
import pvlib

import matplotlib.pyplot as plt

import pandas as pd

import pathlib

First, read in data from the RMIS NREL system. This data set contains 5-minute right-aligned data. It includes POA,
GHI, DNI, DHI, and GNI measurements.

pvanalytics_dir = pathlib.Path(pvanalytics. _file__).parent
rmis_file = pvanalytics_dir / 'data' / 'irradiance_RMIS_NREL.csv'
data = pd.read_csv(rmis_file, index_col=0, parse_dates=True)

Now generate solar zenith estimates for the location, based on the data’s time zone and site latitude-longitude coordi-
nates.

latitude = 39.742

longitude = -105.18

time_zone = "Etc/GMT+7"

data = data.tz_localize(time_zone)

solar_position = pvlib.solarposition.get_solarposition(data.index,
latitude,
longitude)

Use pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad() to generate the QCRAD
consistency mask.

qcrad_consistency_mask = check_irradiance_consistency_qgcrad(
solar_zenith=solar_position['zenith'],
ghi=data['irradiance_ghi__7981"'],
dhi=data['irradiance_dhi__7983'],
dni=data['irradiance_dni__7982"'])

Plot the GHI, DHI, and DNI data streams with the QCRAD consistency mask overlay. This mask applies to all 3 data
streams.

fig = data[['irradiance_ghi__7981', 'irradiance_dhi__7983",
'irradiance_dni__7982"']].plot()

Highlight periods where the QCRAD consistency mask is True

fig.fill_between(data.index, fig.get_ylim()[0], fig.get_ylim()[1],
where=qcrad_consistency_mask[0], alpha=0.4)

fig.legend(labels=["RMIS GHI", "RMIS DHI", "RMIS DNI", "QCRAD Consistent"],

loc="upper center")
plt.xlabel("Date")
plt.ylabel("Irradiance (W/mA2)")

(continues on next page)

3.2. Example Gallery 75

PVAnalytics

(continued from previous page)

plt.tight_layout()

plt.show()
—— RMIS GHI
1000 - —— RMIS DHI
—— RMIS DNI
QCRAD Consistent
2800 -
~
€
E
§' 600 -
o
[]
5
= 400 -
[
=
200 -
0
02 03 04 05 06
Feb
2019
Date

Plot the GHI, DHI, and DNI data streams with the diffuse ratio limit mask overlay. This mask is true when the DHI /
GHI ratio passes the limit test.

fig = data[['irradiance_ghi__7981', 'irradiance_dhi__7983",
'irradiance_dni__7982"']].plot()
Highlight periods where the GHI ratio passes the limit test
fig.fill_between(data.index, fig.get_ylim()[0], fig.get_ylim()[1],
where=qcrad_consistency_mask[1], alpha=0.4)
fig.legend(labels=["RMIS GHI", "RMIS DHI", "RMIS DNI",
"Within Diffuse Ratio Limit"],
loc="upper center")
plt.xlabel("Date")
plt.ylabel("Irradiance (W/mA2)")
plt.tight_layout()
plt.show()

76 Chapter 3. Contents

PVAnalytics

—— RMIS GHI
1000 - —— RMIS DHI
x— RMIS DNI m
Within Diffuse Ratio Limit

800 -
~
€
E
‘.._-:-:‘ 600 1
o
()
5
= 400 -
o
=

200 -

0
02 03 04 05 06
Feb
2019
Date

Total running time of the script: (0 minutes 0.628 seconds)

3.2.16 Day-Night Masking

Masking day-night periods using the PVAnalytics daytime module.

Identifying and masking day-night periods in an AC power time series or irradiance time series can aid in future data
analysis, such as detecting if a time series has daylight savings time or time shifts. Here, we use pvanalytics.
features.daytime.power_or_irradiance () to mask day/night periods, as well as to estimate sunrise and sunset
times in the data set. This function is particularly useful for cases where the time zone of a data stream is unknown or
incorrect, as its outputs can be used to determine time zone.

import pvanalytics

from pvanalytics.features.daytime import power_or_irradiance
import matplotlib.pyplot as plt

import pandas as pd

import pathlib

import pvlib

import numpy as np

First, read in the 1-minute sampled AC power time series data, taken from the SERF East installation on the NREL
campus. This sample is provided from the NREL PVDAQ database, and contains a column representing an AC power
data stream.

3.2. Example Gallery 77

PVAnalytics

pvanalytics_dir = pathlib.Path(pvanalytics._ _file__).parent
ac_power_file = pvanalytics_dir / 'data' / 'serf_east_lmin_ac_power.csv'
data = pd.read_csv(ac_power_file, index_col=0, parse_dates=True)

data = data.sort_index()

This is the known frequency of the time series. You may need to infer
the frequency or set the frequency with your AC power time series.
freq = "1T"

These are the latitude-longitude coordinates associated with the

SERF East system.

latitude = 39.742

longitude = -105.173

Plot the time series.

data['ac_power__752"].plot()

plt.xlabel("Date")

plt.ylabel ("AC Power (kW)")

plt.tight_layout()

plt.show()
4000
— 3000 1
=
=
|-
T
5
a 2000
J
=T
1000 -
0_
. . . T . . .
06:00 12:00 18:00 00:00 06:00 12:00 18:00
19-Mar
2022
Date

It is critical to set all negative values in the AC power time series to O for pvanalytics. features.daytime.
power_or_irradiance () to work properly. Negative erroneous data may affect daytime mask assignments.

data.loc[data['ac_power__752'] < 0, 'ac_power__752'] =0

Now, use pvanalytics. features.daytime.power_or_irradiance () to mask day periods in the time series.

78 Chapter 3. Contents

PVAnalytics

predicted_day_night_mask = power_or_irradiance(series=data['ac_power__752'],
freq=freq)

Function pvlib.solarposition.sun_rise_set_transit_spa() is used to get ground-truth sunrise and sunset
times for each day at the site location, and a SPA-daytime mask is calculated based on these times. Data associated
with SPA daytime periods is labeled as True, and data associated with SPA nighttime periods is labeled as False.
SPA sunrise and sunset times are used here as a point of comparison to the pvanalytics. features.daytime.
power_or_irradiance() outputs. SPA-based sunrise and sunset values are not needed to run pvanalytics.
features.daytime.power_or_irradiance().

sunrise_sunset_df = pvlib.solarposition.sun_rise_set_transit_spa(data.index,
latitude,
longitude)

data['sunrise_time'] = sunrise_sunset_df['sunrise']

data['sunset_time'] = sunrise_sunset_df['sunset']

data['daytime_mask'] = True
data.loc[(data.index < data.sunrise_time) |
(data.index > data.sunset_time), "daytime_mask"] = False

VvV A

Plot the AC power data stream with the mask output from pvanalytics.features.daytime.
power_or_irradiance(), as well as the SPA-calculated sunrise and sunset

data['ac_power__752"].plot()
data.loc[predicted_day_night_mask, 'ac_power__752'].plot(ls="", marker='o")
data.loc[~predicted_day_night_mask, 'ac_power__752'].plot(ls="", marker='o")
sunrise_sunset_times = sunrise_sunset_df[['sunrise',
'sunset']].drop_duplicates()
for sunrise, sunset in sunrise_sunset_times.itertuples(index=False):
plt.axvline(x=sunrise, c="blue")
plt.axvline(x=sunset, c="red")
plt.legend(labels=["AC Power", "Daytime", "Nighttime",
"SPA Sunrise", "SPA Sunset"])
plt.xlabel("Date")
plt.ylabel ("AC Power (kW)")
plt.tight_layout()
plt.show()

3.2. Example Gallery 79

https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.solarposition.sun_rise_set_transit_spa.html#pvlib.solarposition.sun_rise_set_transit_spa

PVAnalytics

T
—— AC Power
o Daytime
4000 ® Nighttime
—— SPA Sunrise
—— 5SPA Sunset
— 3000 4
=
=
b
L8
s
a 2000 4
8]
<
1000 +
0

I ! T 1 T T T
06:00 12:00 18:00 00:00 06:00 12:00
19-Mar
2022

Date

18:00

Compare the predicted mask to the ground-truth SPA mask, to get the model accuracy. Also, compare sunrise and

sunset times for the predicted mask compared to the ground truth sunrise and sunset times.

acc = 100 * np.sum(np.equal(data.daytime_mask,

predicted_day_night_mask))/len(data.daytime_mask)

print("Overall model prediction accuracy: " + str(round(acc, 2)) + "%")

Generate predicted + SPA sunrise times for each day

print("Sunrise Comparison:')

print(pd.DataFrame({'predicted_sunrise': predicted_day_night_mask
.index[predicted_day_night_mask]
.to_series().resample("d").first(Q),
'pvlib_spa_sunrise': sunrise_sunset_df["sunrise"]
.resample("d").first()}))

Generate predicted + SPA sunset times for each day

print("Sunset Comparison:")

print (pd.DataFrame({ 'predicted_sunset': predicted_day_night_mask
.index[predicted_day_night_mask]
.to_series().resample("d").last(),
'pvlib_spa_sunset': sunrise_sunset_df["sunrise"]
.resample("d").last(}))

Overall model prediction accuracy: 98.39%

(continues on next page)

80 Chapter 3. Contents

PVAnalytics

(continued from previous page)

Sunrise Comparison:

predicted_sunrise pvlib_spa_sunrise
measured_on
2022-03-18 00:00:00-07:00 2022-03-18 06:11:00-07:00 2022-03-18 06:07:09.226592-07:00
2022-03-19 00:00:00-07:00 2022-03-19 06:14:00-07:00 2022-03-19 06:05:32.867153920-07:00
Sunset Comparison:

predicted_sunset pvlib_spa_sunset
measured_on
2022-03-18 00:00:00-07:00 2022-03-18 17:56:00-07:00 2022-03-18 06:07:09.226592-07:00
2022-03-19 00:00:00-07:00 2022-03-19 17:52:00-07:00 2022-03-19 06:05:32.867153920-07:00

Total running time of the script: (0 minutes 1.199 seconds)

3.3 Release Notes

These are the bug-fixes, new features, and improvements for each release.

3.3.1 0.1.2 (August 18, 2022)

Enhancements

¢ Detect data shifts in daily summed time series with pvanalytics.quality.
data_shifts.detect_data_shifts() and pvanalytics.quality.data_shifts.
get_longest_shift_segment_dates(). (GH142)

Bug Fixes

» Fix pvanalytics.quality.outliers.zscore() so that the NaN mask is assigned the time series index
(GH138)

Documentation

Added fifteen new gallery example pages:

e pvanalytics.features.clipping (GH133, GH134):
— geometric()

e pvanalytics.quality.gaps (GH133, GH135):
— stale_values_diff()
— stale_values_round()
— interpolation_diff()
— completeness_score()
— complete()
— trim_incomplete()

e pvanalytics.quality.outliers (GH133, GH138):

3.3. Release Notes 81

https://github.com/pvlib/pvanalytics/pull/142
https://github.com/pvlib/pvanalytics/pull/138
https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/134
https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/135
https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/138

PVAnalytics

- tukey()
— zscore()
— hampel()
e pvanalytics.features.daytime (GH133, GH139):
— power_or_irradiance()
e pvanalytics.quality.irradiance (GH133, GH140):

clearsky_limits()

daily_insolation_limits()

check_irradiance_consistency_qcrad()

— check_irradiance_limits_qcrad()
e pvanalytics.features.orientation (GH133, GH148):
— fixed_nrel()
— tracking nrel()
e pvanalytics.quality.data_shifts (GHI131):
— detect_data_shifts()

— get_longest_shift_segment_dates()

Other

* Removed empty modules pvanalytics.filtering and pvanalytics.fitting until the relevant function-
ality is added to the package. (GH145)

Contributors

* Kirsten Perry (@kperrynrel)
 Cliff Hansen (@cwhanse)
¢ Kevin Anderson (@kanderso-nrel)

* Will Vining (@wfvining)

3.3.2 0.1.1 (February 18, 2022)

Enhancements
¢ Quantification of irradiance variability with pvanalytics.metrics.variability_index(). (GHG60,
GH106)

* Internal refactor of pvanalytics.metrics.performance_ratio_nrel () to support other performance ratio
formulas. (GH109)

* Detect shadows from fixed objects in GHI data using pvanalytics. features.shading. fixed(). (GH24,
GH101)

82 Chapter 3. Contents

https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/139
https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/140
https://github.com/pvlib/pvanalytics/issues/133
https://github.com/pvlib/pvanalytics/pull/148
https://github.com/pvlib/pvanalytics/pull/131
https://github.com/pvlib/pvanalytics/pull/145
https://github.com/kperrynrel
https://github.com/cwhanse
https://github.com/kanderso-nrel
https://github.com/wfvining
https://github.com/pvlib/pvanalytics/issues/60
https://github.com/pvlib/pvanalytics/pull/106
https://github.com/pvlib/pvanalytics/pull/109
https://github.com/pvlib/pvanalytics/issues/24
https://github.com/pvlib/pvanalytics/pull/101

PVAnalytics

Bug Fixes

* Added nan_policy parameter to zscore calculation in pvanalytics.quality.outliers.zscore().
(GH102, GH108)

* Prohibit pandas versions in the 1.1.x series to avoid an issue in .groupby().rolling(). Newer versions
starting in 1.2.0 and older versions going back to 0.24.0 are still allowed. (GH82, GH118)

* Fixed an issue with pvanalytics. features.clearsky.reno() in recent pandas versions (GH125, GH128)

* Improved convergence in pvanalytics. features.orientation.fixed_nrel() (GH119, GH120)

Requirements

* Drop support for python 3.6, which reached end of life Dec 2021 (GH129)

Documentation

* Started an example gallery and added an example for pvanalytics. features.clearsky.reno() (GHI25,
GHI127)

Contributors

¢ Kevin Anderson (@kanderso-nrel)

e CIliff Hansen (@cwhanse)

* Will Vining (@wfvining)

* Kirsten Perry (@kperrynrel)

* Michael Hopwood (@MichaelHopwood)

Carlos Silva (@camsilva)

* Ben Taylor (@bt-)

3.3.3 0.1.0 (November 20, 2020)

This is the first release of PVAnalytics. As such, the list of “changes” below is not specific. Future releases will describe
specific changes here along with references to the relevant github issue and pull requests.

API Changes
Enhancements

* Quality control functions for irradiance, weather and time series data. See pvanalytics.quality for content.

* Feature labeling functions for clipping, clearsky, daytime, and orientation. See pvanalytics.features for
content.

» System parameter inference for tilt, azimuth, and whether the system is tracking or fixed. See pvanalytics.
system for content.

e NREL performance ratio metric (pvanalytics.metrics.performance_ratio_nrel()).

3.3. Release Notes 83

https://github.com/pvlib/pvanalytics/issues/102
https://github.com/pvlib/pvanalytics/pull/108
https://github.com/pvlib/pvanalytics/issues/82
https://github.com/pvlib/pvanalytics/pull/118
https://github.com/pvlib/pvanalytics/issues/125
https://github.com/pvlib/pvanalytics/pull/128
https://github.com/pvlib/pvanalytics/issues/119
https://github.com/pvlib/pvanalytics/pull/120
https://github.com/pvlib/pvanalytics/pull/129
https://github.com/pvlib/pvanalytics/issues/125
https://github.com/pvlib/pvanalytics/pull/127
https://github.com/kanderso-nrel
https://github.com/cwhanse
https://github.com/wfvining
https://github.com/kperrynrel
https://github.com/MichaelHopwood
https://github.com/camsilva
https://github.com/bt-

PVAnalytics

Bug Fixes
Contributors

* Will Vining (@wfvining)
 Cliff Hansen (@cwhanse)
* Saurabh Aneja (@spaneja)

Special thanks to Matt Muller and Kirsten Perry of NREL for their assistance in adapting components from the PVFleets
QA project to PVAnalytics.

84 Chapter 3. Contents

https://github.com/wfvining
https://github.com/cwhanse
https://github.com/spaneja

CHAPTER
FOUR

INDICES AND TABLES

* genindex

e search

85

PVAnalytics

86

Chapter 4. Indices and tables

C

check_dhi_limits_qcrad() (in
ics.quality.irradiance), 10
check_dni_limits_qcrad() (in
ics.quality.irradiance), 10
check_ghi_limits_gcrad() (in
ics.quality.irradiance), 9
check_irradiance_consistency_qcrad() (in mod-
ule pvanalytics.quality.irradiance), 12
check_irradiance_limits_qcrad() (in module pv-
analytics.quality.irradiance), 11
check_limits() (in module pvanalytics.quality.util), 25
clearsky_limits() (in module pvanalyt-
ics.quality.irradiance), 13
complete() (in module pvanalytics.quality.gaps), 18
completeness_score() (in module pvanalyt-
ics.quality.gaps), 18

module pvanalyt-
module pvanalyt-

module pvanalyt-

D

daily_insolation_limits() (in module pvanalyt-
ics.quality.irradiance), 14

daily_min() (in module pvanalytics.quality.util), 25

detect_data_shifts() (in module pvanalyt-
ics.quality.data_shifts), 7

F

fixed () (in module pvanalytics.features.shading), 35
fixed_nrel() (in module pvanalyt-
ics.features.orientation), 32

G

geometric() (in module pvanalytics.features.clipping),
29

get_longest_shift_segment_dates() (in module
pvanalytics.quality.data_shifts), 8

H

hampel) (in module pvanalytics.quality.outliers), 22
has_dst () (in module pvanalytics.quality.time), 24

INDEX

infer_orientation_daily_peak() (in module pvan-
alytics.system), 38

infer_orientation_fit_pvwatts() (in module pv-
analytics.system), 39

interpolation_diff() (in module pvanalyt-
ics.quality.gaps), 15
is_tracking_envelope() (in module pvanalyt-

ics.system), 37

L

levels () (in module pvanalytics.features.clipping), 28

M

module_temperature_check() (in module pvanalyt-
ics.quality.weather), 27

P

performance_ratio_nrel() (in module pvanalyt-
ics.metrics), 40

power_or_irradiance() (in
ics.features.daytime), 34

module pvanalyt-

R

relative_humidity_limits() (in module pvanalyt-
ics.quality.weather), 26
reno() (in module pvanalytics.features.clearsky), 30

S

shifts_ruptures() (in
ics.quality.time), 23
spacing () (in module pvanalytics.quality.time), 22

module pvanalyt-

stale_values_diff() (in module pvanalyt-
ics.quality.gaps), 16

stale_values_round() (in module pvanalyt-
ics.quality.gaps), 17

start_stop_dates() (in module pvanalyt-
ics.quality.gaps), 19

T

temperature_limits() (in module pvanalyt-

ics.quality.weather), 26

87

PVAnalytics

threshold() (in module pvanalytics.features.clipping),

29
Tracker (class in pvanalytics.system), 36
tracking nrel() (in module pvanalyt-

ics.features.orientation), 32
trim() (in module pvanalytics.quality.gaps), 19
trim_incomplete() (in module pvanalyt-
ics.quality.gaps), 20
tukey) (in module pvanalytics.quality.outliers), 21

\Y

variability_index () (in module pvanalytics.metrics),
41

W

wind_limits() (in module pvanalytics.quality.weather),
27

Z

zscore() (in module pvanalytics.quality.outliers), 21

88

Index

	Library Overview
	Dependencies
	Contents
	API Reference
	Quality
	Data Shifts
	pvanalytics.quality.data_shifts.detect_data_shifts
	Examples using pvanalytics.quality.data_shifts.detect_data_shifts

	pvanalytics.quality.data_shifts.get_longest_shift_segment_dates
	Examples using pvanalytics.quality.data_shifts.get_longest_shift_segment_dates

	Irradiance
	pvanalytics.quality.irradiance.check_ghi_limits_qcrad
	pvanalytics.quality.irradiance.check_dhi_limits_qcrad
	pvanalytics.quality.irradiance.check_dni_limits_qcrad
	pvanalytics.quality.irradiance.check_irradiance_limits_qcrad
	Examples using pvanalytics.quality.irradiance.check_irradiance_limits_qcrad

	pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad
	Examples using pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad

	pvanalytics.quality.irradiance.clearsky_limits
	Examples using pvanalytics.quality.irradiance.clearsky_limits

	pvanalytics.quality.irradiance.daily_insolation_limits
	Examples using pvanalytics.quality.irradiance.daily_insolation_limits

	Gaps
	pvanalytics.quality.gaps.interpolation_diff
	Examples using pvanalytics.quality.gaps.interpolation_diff

	pvanalytics.quality.gaps.stale_values_diff
	Examples using pvanalytics.quality.gaps.stale_values_diff

	pvanalytics.quality.gaps.stale_values_round
	Examples using pvanalytics.quality.gaps.stale_values_round

	pvanalytics.quality.gaps.completeness_score
	Examples using pvanalytics.quality.gaps.completeness_score

	pvanalytics.quality.gaps.complete
	Examples using pvanalytics.quality.gaps.complete

	pvanalytics.quality.gaps.start_stop_dates
	pvanalytics.quality.gaps.trim
	pvanalytics.quality.gaps.trim_incomplete
	Examples using pvanalytics.quality.gaps.trim_incomplete

	Outliers
	pvanalytics.quality.outliers.tukey
	Examples using pvanalytics.quality.outliers.tukey

	pvanalytics.quality.outliers.zscore
	Examples using pvanalytics.quality.outliers.zscore

	pvanalytics.quality.outliers.hampel
	Examples using pvanalytics.quality.outliers.hampel

	Time
	pvanalytics.quality.time.spacing
	pvanalytics.quality.time.shifts_ruptures
	pvanalytics.quality.time.has_dst

	Utilities
	pvanalytics.quality.util.check_limits
	pvanalytics.quality.util.daily_min

	Weather
	pvanalytics.quality.weather.relative_humidity_limits
	pvanalytics.quality.weather.temperature_limits
	pvanalytics.quality.weather.wind_limits
	pvanalytics.quality.weather.module_temperature_check

	Features
	Clipping
	pvanalytics.features.clipping.levels
	pvanalytics.features.clipping.threshold
	pvanalytics.features.clipping.geometric
	Examples using pvanalytics.features.clipping.geometric

	Clearsky
	pvanalytics.features.clearsky.reno
	Examples using pvanalytics.features.clearsky.reno

	Orientation
	pvanalytics.features.orientation.fixed_nrel
	Examples using pvanalytics.features.orientation.fixed_nrel

	pvanalytics.features.orientation.tracking_nrel
	Examples using pvanalytics.features.orientation.tracking_nrel

	Daytime
	pvanalytics.features.daytime.power_or_irradiance
	Examples using pvanalytics.features.daytime.power_or_irradiance

	Shading
	pvanalytics.features.shading.fixed

	System
	Tracking
	pvanalytics.system.Tracker
	pvanalytics.system.is_tracking_envelope

	Orientation
	pvanalytics.system.infer_orientation_daily_peak
	pvanalytics.system.infer_orientation_fit_pvwatts

	Metrics
	Performance Ratio
	pvanalytics.metrics.performance_ratio_nrel

	Variability
	pvanalytics.metrics.variability_index

	Example Gallery
	Z-Score Outlier Detection
	Tukey Outlier Detection
	Hampel Outlier Detection
	Flag Sunny Days for a Fixed-Tilt System
	Flag Sunny Days for a Tracking System
	Clear-Sky Detection
	Interpolated Data Periods
	Clearsky Limits for Daily Insolation
	Data Shift Detection & Filtering
	Clearsky Limits for Irradiance Data
	Stale Data Periods
	Clipping Detection
	QCrad Limits for Irradiance Data
	Missing Data Periods
	QCrad Consistency for Irradiance Data
	Day-Night Masking

	Release Notes
	0.1.2 (August 18, 2022)
	Enhancements
	Bug Fixes
	Documentation
	Other
	Contributors

	0.1.1 (February 18, 2022)
	Enhancements
	Bug Fixes
	Requirements
	Documentation
	Contributors

	0.1.0 (November 20, 2020)
	API Changes
	Enhancements
	Bug Fixes
	Contributors

	Indices and tables
	Index

