

PVAnalytics

PVAnalytics is a python library that supports analytics for PV
systems. It provides functions for quality control, filtering, and
feature labeling and other tools supporting the analysis of PV
system-level data.

The source code for PVAnalytics is hosted on github [https://github.com/pvlib/pvanalytics].

Library Overview

The functions provided by PVAnalytics are organized in submodules based
on their anticipated use. The list below provides a general overview; however,
not all modules have functions at this time, see the API reference for current
library status.

	quality contains submodules for different kinds of data quality
checks.

	quality.irradiance contains quality checks for irradiance
measurements.

	quality.weather contains quality checks for weather data (e.g.
tests for physically plausible values of temperature, wind speed,
humidity).

	quality.outliers contains functions for identifying outliers.

	quality.gaps contains functions for identifying gaps in the data
(i.e. missing values, stuck values, and interpolation).

	quality.time quality checks related to time (e.g. timestamp
spacing, time shifts).

	quality.util general purpose quality functions (e.g. simple
range checks).

	filtering as the name implies, contains functions for data
filtering.

	features contains submodules with different methods for
identifying and labeling salient features.

	features.clipping functions for labeling inverter clipping.

	features.clearsky functions for identifying periods of clear sky
conditions.

	features.daytime functions for identifying periods of day and night.

	features.orientation functions for identifying
orientation-related features in the data (e.g. days where the data looks
like there is a functioning tracker). These functions are distinct from the
functions in the system module in that we are identifying
features of data rather than properties of the system that produced the
data.

	system identification of PV system characteristics from data
(e.g. nameplate power, tilt, azimuth)

	translate contains functions for translating data to other
conditions (e.g. IV curve translators, temperature adjustment,
irradiance adjustment)

	metrics contains functions for computing PV system-level metrics
(e.g. performance ratio)

	fitting contains submodules for different types of models that can
be fit to data (e.g. temperature models)

	dataclasses contains classes for normalizing data (e.g. an
IVCurve class)

Dependencies

This project follows the guidelines laid out in
NEP-29 [https://numpy.org/neps/nep-0029-deprecation_policy.html].
It supports:

	All minor versions of Python released 42 months prior to the project,
and at minimum the two latest minor versions.

	All minor versions of numpy released in the 24 months prior to the project,
and at minimum the last three minor versions

	The latest release of PVLib [https://pvlib-python.readthedocs.io].

PVAnalytics depends on the following packages:

numpy>=1.15.0
pandas>=0.23.0,<1.1.0
pvlib>=0.8.0
scipy>=1.2.0
statsmodels>=0.9.0

Contents

Contents:

	API Reference
	Quality
	Irradiance

	Gaps

	Outliers

	Time

	Utilities

	Weather

	Features
	Clipping

	Clearsky

	Orientation

	Daytime

	System
	Tracking

	Orientation

	Metrics
	Performance Ratio

	Release Notes
	0.1.0 (November 20, 2020)
	API Changes

	Enhancements

	Bug Fixes

	Contributors

Indices and tables

	Index

	Search Page

API Reference

Quality

Irradiance

The check_*_limits_qcrad functions use the QCRad algorithm 1 to
identify irradiance measurements that are beyond physical limits.

	quality.irradiance.check_ghi_limits_qcrad(…)

	Test for physical limits on GHI using the QCRad criteria.

	quality.irradiance.check_dhi_limits_qcrad(…)

	Test for physical limits on DHI using the QCRad criteria.

	quality.irradiance.check_dni_limits_qcrad(…)

	Test for physical limits on DNI using the QCRad criteria.

All three checks can be combined into a single function call.

	quality.irradiance.check_irradiance_limits_qcrad(…)

	Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Irradiance measurements can also be checked for consistency.

	quality.irradiance.check_irradiance_consistency_qcrad(…)

	Check consistency of GHI, DHI and DNI using QCRad criteria.

GHI and POA irradiance can be validated against clearsky values to
eliminate data that is unrealistically high.

	quality.irradiance.clearsky_limits(measured, …)

	Identify irradiance values which do not exceed clearsky values.

You may want to identify entire days that have unrealistically high or
low insolation. The following function examines daily insolation,
validating that it is within a reasonable range of the expected
clearsky insolation for the same day.

	quality.irradiance.daily_insolation_limits(…)

	Check that daily insolation lies between minimum and maximum values.

Gaps

Identify gaps in the data.

	quality.gaps.interpolation_diff(x[, window, …])

	Identify sequences which appear to be linear.

Data sometimes contains sequences of values that are “stale” or
“stuck.” These are contiguous spans of data where the value does not
change within the precision given. The functions below
can be used to detect stale values.

Note

If the data has been altered in some way (i.e. temperature that has
been rounded to an integer value) before being passed to these
functions you may see unexpectedly large amounts of stale data.

	quality.gaps.stale_values_diff(x[, window, …])

	Identify stale values in the data.

	quality.gaps.stale_values_round(x[, window, …])

	Identify stale values by rounding.

The following functions identify days with incomplete data.

	quality.gaps.completeness_score(series[, …])

	Calculate a data completeness score for each day.

	quality.gaps.complete(series[, …])

	Select data points that are part of days with complete data.

Many data sets may have leading and trailing periods of days with sporadic or
no data. The following functions can be used to remove those periods.

	quality.gaps.start_stop_dates(series[, days])

	Get the start and end of data excluding leading and trailing gaps.

	quality.gaps.trim(series[, days])

	Mask the beginning and end of the data if not all True.

	quality.gaps.trim_incomplete(series[, …])

	Trim the series based on the completeness score.

Outliers

Functions for detecting outliers.

	quality.outliers.tukey(data[, k])

	Identify outliers based on the interquartile range.

	quality.outliers.zscore(data[, zmax])

	Identify outliers using the z-score.

	quality.outliers.hampel(data[, window, …])

	Identify outliers by the Hampel identifier.

Time

Quality control related to time. This includes things like time-stamp
spacing, time-shifts, and time zone validation.

	quality.time.spacing(times, freq)

	Check that the spacing between times conforms to freq.

Timestamp shifts, such as daylight savings, can be identified with
the following functions.

	quality.time.shifts_ruptures(event_times, …)

	Identify time shifts using the ruptures library.

	quality.time.has_dst(events, tz[, window, …])

	Return True if events appears to have daylight savings shifts at the dates on which tz transitions to or from daylight savings time.

Utilities

The quality.util module contains general-purpose/utility
functions for building your own quality checks.

	quality.util.check_limits(val[, …])

	Check whether a value falls withing the given limits.

	quality.util.daily_min(series, minimum[, …])

	Return True for data on days when the day’s minimum exceeds minimum.

Weather

Quality checks for weather data.

	quality.weather.relative_humidity_limits(…)

	Identify relative humidity values that are within limits.

	quality.weather.temperature_limits(…[, limits])

	Identify temperature values that are within limits.

	quality.weather.wind_limits(wind_speed[, limits])

	Identify wind speed values that are within limits.

In addition to validating temperature by comparing with limits, module
temperature should be positively correlated with irradiance. Poor
correlation could indicate that the sensor has become detached from
the module, for example. Unlike other functions in the
quality module which return Boolean masks over the input
series, this function returns a single Boolean value indicating
whether the entire series has passed (True) or failed (False)
the quality check.

	quality.weather.module_temperature_check(…)

	Test whether the module temperature is correlated with irradiance.

References

	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

Features

Functions for detecting features in the data.

Clipping

Functions for identifying inverter clipping

	features.clipping.levels(ac_power[, window, …])

	Label clipping in AC power data based on levels in the data.

	features.clipping.threshold(ac_power[, …])

	Detect clipping based on a maximum power threshold.

	features.clipping.geometric(ac_power[, …])

	Identify clipping based on a the shape of the ac_power curve on each day.

Clearsky

	features.clearsky.reno(ghi, ghi_clearsky)

	Identify times when GHI is consistent with clearsky conditions.

Orientation

System orientation refers to mounting type (fixed or tracker) and the
azimuth and tilt of the mounting. A system’s orientation can be
determined by examining power or POA irradiance on days that are
relatively sunny.

This module provides functions that operate on power or POA irradiance
to identify system orientation on a daily basis. These functions can
tell you whether a day’s profile matches that of a fixed system or
system with a single-axis tracker.

Care should be taken when interpreting function output since
other factors such as malfunctioning trackers can interfere with
identification.

	features.orientation.fixed_nrel(…[, …])

	Flag days that match the profile of a fixed PV system on a sunny day.

	features.orientation.tracking_nrel(…[, …])

	Flag days that match the profile of a single-axis tracking PV system on a sunny day.

Daytime

Functions that return a Boolean mask indicating day and night.

	features.daytime.power_or_irradiance(series)

	Return True for values that are during the day.

System

This module contains functions and classes relating to PV system
parameters such as nameplate power, tilt, azimuth, or whether the
system is equipped with tracker.

Tracking

	system.Tracker

	Enum describing the orientation of a PV System.

	system.is_tracking_envelope(series, daytime, …)

	Infer whether the system is equipped with a tracker.

Orientation

The following function can be used to infer system orientation from
power or plane of array irradiance measurements.

	system.infer_orientation_daily_peak(…)

	Determine system azimuth and tilt from power or POA using solar azimuth at the daily peak.

	system.infer_orientation_fit_pvwatts(…[, …])

	Get the tilt and azimuth that give PVWatts output that most closely fits the data in power_ac.

Metrics

Performance Ratio

The following functions can be used to calculate system performance metrics.

	metrics.performance_ratio_nrel(poa_global, …)

	Calculate NREL Performance Ratio.

pvanalytics.quality.irradiance.check_ghi_limits_qcrad

	
pvanalytics.quality.irradiance.check_ghi_limits_qcrad(ghi, solar_zenith, dni_extra, limits=None)

	Test for physical limits on GHI using the QCRad criteria.

Test is applied to each GHI value. A GHI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as

\[ub = min + mult * dni_extra * cos(solar_zenith)^{exp}\]

	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\)

	solar_zenith (Series) – Solar zenith angle in degrees

	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)

	limits (dict, default QCRAD_LIMITS) – Must have keys ‘ghi_ub’ and ‘ghi_lb’. For ‘ghi_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘ghi_lb’ value is a float.

	Returns

	True where value passes limits test.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.irradiance.check_dhi_limits_qcrad

	
pvanalytics.quality.irradiance.check_dhi_limits_qcrad(dhi, solar_zenith, dni_extra, limits=None)

	Test for physical limits on DHI using the QCRad criteria.

Test is applied to each DHI value. A DHI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as

\[ub = min + mult * dni_extra * cos(solar_zenith)^{exp}\]

	Parameters

	
	dhi (Series) – Diffuse horizontal irradiance in \(W/m^2\)

	solar_zenith (Series) – Solar zenith angle in degrees

	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)

	limits (dict, default QCRAD_LIMITS) – Must have keys ‘dhi_ub’ and ‘dhi_lb’. For ‘dhi_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘dhi_lb’ value is a float.

	Returns

	True where value passes limit test.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.irradiance.check_dni_limits_qcrad

	
pvanalytics.quality.irradiance.check_dni_limits_qcrad(dni, solar_zenith, dni_extra, limits=None)

	Test for physical limits on DNI using the QCRad criteria.

Test is applied to each DNI value. A DNI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as

\[ub = min + mult * dni_extra * cos(solar_zenith)^{exp}\]

	Parameters

	
	dni (Series) – Direct normal irradiance in \(W/m^2\)

	solar_zenith (Series) – Solar zenith angle in degrees

	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)

	limits (dict, default QCRAD_LIMITS) – Must have keys ‘dni_ub’ and ‘dni_lb’. For ‘dni_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘dni_lb’ value is a float.

	Returns

	True where value passes limit test.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.irradiance.check_irradiance_limits_qcrad

	
pvanalytics.quality.irradiance.check_irradiance_limits_qcrad(solar_zenith, dni_extra, ghi=None, dhi=None, dni=None, limits=None)

	Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Criteria from 1 are used to determine physically plausible
lower and upper bounds. Each value is tested and a value passes if
value > lower bound and value < upper bound. Lower bounds are
constant for all tests. Upper bounds are calculated as

\[ub = min + mult * dni_extra * cos(solar_zenith)^{exp}\]

Note

If any of ghi, dhi, or dni are None, the
corresponding element of the returned tuple will also be None.

	Parameters

	
	solar_zenith (Series) – Solar zenith angle in degrees

	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)

	ghi (Series or None, default None) – Global horizontal irradiance in \(W/m^2\)

	dhi (Series or None, default None) – Diffuse horizontal irradiance in \(W/m^2\)

	dni (Series or None, default None) – Direct normal irradiance in \(W/m^2\)

	limits (dict, default QCRAD_LIMITS) – for keys ‘ghi_ub’, ‘dhi_ub’, ‘dni_ub’, value is a dict with
keys {‘mult’, ‘exp’, ‘min’} and float values. For keys
‘ghi_lb’, ‘dhi_lb’, ‘dni_lb’, value is a float.

	Returns

	
	ghi_limit_flag (Series) – True for each value that is physically possible. None if ghi is None.

	dhi_limit_flag (Series) – True for each value that is physically possible. None if dni is None.

	dhi_limit_flag (Series) – True for each value that is physically possible. None if dhi is None.

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References

	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad

	
pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad(ghi, solar_zenith, dhi, dni, param=None)

	Check consistency of GHI, DHI and DNI using QCRad criteria.

Uses criteria given in 1 to validate the ratio of irradiance
components.

Warning

Not valid for night time. While you can pass data
from night time to this function, be aware that the truth
values returned for that data will not be valid.

	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\)

	solar_zenith (Series) – Solar zenith angle in degrees

	dhi (Series) – Diffuse horizontal irradiance in \(W/m^2\)

	dni (Series) – Direct normal irradiance in \(W/m^2\)

	param (dict) – keys are ‘ghi_ratio’ and ‘dhi_ratio’. For each key, value is a dict
with keys ‘high_zenith’ and ‘low_zenith’; for each of these keys,
value is a dict with keys ‘zenith_bounds’, ‘ghi_bounds’, and
‘ratio_bounds’ and value is an ordered pair [lower, upper]
of float.

	Returns

	
	consistent_components (Series) – True where ghi, dhi and dni components are consistent.

	diffuse_ratio_limit (Series) – True where diffuse to GHI ratio passes limit test.

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References

	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

pvanalytics.quality.irradiance.clearsky_limits

	
pvanalytics.quality.irradiance.clearsky_limits(measured, clearsky, csi_max=1.1)

	Identify irradiance values which do not exceed clearsky values.

Uses pvlib.irradiance.clearsky_index() to compute the
clearsky index as the ratio of measured to clearsky. Compares the
clearsky index to csi_max to identify values in measured that
are less than or equal to csi_max.

	Parameters

	
	measured (Series) – Measured irradiance in \(W/m^2\).

	clearsky (Series) – Expected clearsky irradiance in \(W/m^2\).

	csi_max (float, default 1.1) – Maximum ratio of measured to clearsky (clearsky index).

	Returns

	True for each value where the clearsky index is less than or
equal to csi_max.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.irradiance.daily_insolation_limits

	
pvanalytics.quality.irradiance.daily_insolation_limits(irrad, clearsky, daily_min=0.4, daily_max=1.25)

	Check that daily insolation lies between minimum and maximum values.

Irradiance measurements and clear-sky irradiance on each day are
integrated with the trapezoid rule to calculate daily insolation.

	Parameters

	
	irrad (Series) – Irradiance measurements (GHI or POA).

	clearsky (Series) – Clearsky irradiance.

	daily_min (float, default 0.4) – Minimum ratio of daily insolation to daily clearsky insolation.

	daily_max (float, default 1.25) – Maximum ratio of daily insolation to daily clearsky insolation.

	Returns

	True for values on days where the ratio of daily insolation to
daily clearsky insolation is between daily_min and daily_max.

	Return type

	Series

Notes

The default limits (daily_max and daily_min) have been set for
GHI and POA irradiance for systems with fixed azimuth and tilt.
If you pass POA irradiance for a tracking system it is recommended
that you increase daily_max to 1.35.

The default values for daily_min and daily_max were taken from
the PVFleets QA Analysis project.

pvanalytics.quality.gaps.interpolation_diff

	
pvanalytics.quality.gaps.interpolation_diff(x, window=6, rtol=1e-05, atol=1e-08, mark='tail')

	Identify sequences which appear to be linear.

Sequences are linear if the first difference appears to be
constant. For a window of length N, the last value (index N-1) is
flagged if all values in the window appear to be a line segment.

Parameters rtol and atol have the same meaning as in
numpy.allclose().

	Parameters

	
	x (Series) – data to be processed

	window (int, default 6) – number of sequential values that, if the first difference is
constant, are classified as a linear sequence

	rtol (float, default 1e-5) – tolerance relative to max(abs(x.diff()) for detecting a change

	atol (float, default 1e-8) – absolute tolerance for detecting a change in first difference

	mark (str, default 'tail') – How much of the window to mark True when a sequence of
interpolated values is detected. Can be one of ‘tail’, ‘end’,
or ‘all’.

	If ‘tail’ (the default) then every point in the window
except the first point is marked True.

	If ‘end’ then the first window - 1 values in an
interpolated sequence are marked False and all
subsequent values in the sequence are marked True.

	If ‘all’ then every point in the window including the
first point is marked True.

	Returns

	True for each value that is part of a linear sequence

	Return type

	Series

	Raises

	ValueError – If window < 3 or mark is not one of ‘tail’, ‘end’, or
 ‘all’.

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.gaps.stale_values_diff

	
pvanalytics.quality.gaps.stale_values_diff(x, window=6, rtol=1e-05, atol=1e-08, mark='tail')

	Identify stale values in the data.

For a window of length N, the last value (index N-1) is considered
stale if all values in the window are close to the first value
(index 0).

Parameters rtol and atol have the same meaning as in
numpy.allclose().

	Parameters

	
	x (Series) – data to be processed

	window (int, default 6) – number of consecutive values which, if unchanged, indicates
stale data

	rtol (float, default 1e-5) – relative tolerance for detecting a change in data values

	atol (float, default 1e-8) – absolute tolerance for detecting a change in data values

	mark (str, default 'tail') – How much of the window to mark True when a sequence of
stale values is detected. Can one be of ‘tail’, ‘end’, or
‘all’.

	If ‘tail’ (the default) then every point in the window
except the first point is marked True.

	If ‘end’ then the first window - 1 values in a stale
sequence sequence are marked False and all subsequent
values in the sequence are marked True.

	If ‘all’ then every point in the window including the
first point is marked True.

	Returns

	True for each value that is part of a stale sequence of data

	Return type

	Series

	Raises

	ValueError – If window < 2 or mark is not one of ‘tail’, ‘end’, or
 ‘all’.

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.gaps.stale_values_round

	
pvanalytics.quality.gaps.stale_values_round(x, window=6, decimals=3, mark='tail')

	Identify stale values by rounding.

A value is considered stale if it is part of a sequence of length
window of values that are identical when rounded to decimals
decimal places.

	Parameters

	
	x (Series) – Data to be processed.

	window (int, default 6) – Number of consecutive identical values for a data point to be
considered stale.

	decimals (int, default 3) – Number of decimal places to round to.

	mark (str, default 'tail') – How much of the window to mark True when a sequence of
stale values is detected. Can be one of ‘tail’, ‘end’, or
‘all’.

	If ‘tail’ (the default) then every point in the window
except the first point is marked True.

	If ‘end’ then the first window - 1 values in a stale
sequence sequence are marked False and all subsequent
values in the sequence are marked True.

	If ‘all’ then every point in the window including the
first point is marked True.

	Returns

	True for each value that is part of a stale sequence of data.

	Return type

	Series

	Raises

	ValueError – If mark is not one of ‘tail’, ‘end’, or ‘all’.

Notes

Based on code from the pvfleets_qa_analysis project. Copyright
(c) 2020 Alliance for Sustainable Energy, LLC.

pvanalytics.quality.gaps.completeness_score

	
pvanalytics.quality.gaps.completeness_score(series, freq=None, keep_index=True)

	Calculate a data completeness score for each day.

The completeness score for a given day is the fraction of time in
the day for which there is data (a value other than NaN). The time
duration attributed to each value is equal to the timestamp
spacing of series, or freq if it is specified. For example, a
24-hour time series with 30 minute timestamp spacing and 24
non-NaN values would have data for a total of 12 hours and
therefore a completeness score of 0.5.

	Parameters

	
	series (Series) – A DatetimeIndexed series.

	freq (str, default None) – Interval between samples in the series as a pandas frequency
string. If None, the frequency is inferred using
pandas.infer_freq().

	keep_index (boolean, default True) – Whether or not the returned series has the same index as
series. If False the returned series will be indexed by day.

	Returns

	A series of floats giving the completeness score for each day
(fraction of the day for which series has data).

	Return type

	Series

	Raises

	ValueError – If freq is longer than the frequency inferred from series.

pvanalytics.quality.gaps.complete

	
pvanalytics.quality.gaps.complete(series, minimum_completeness=0.333, freq=None)

	Select data points that are part of days with complete data.

A day has complete data if its completeness score is greater than
or equal to minimum_completeness. The completeness score is
calculated by completeness_score().

	Parameters

	
	series (Series) – The data to be checked for completeness.

	minimum_completeness (float, default 0.333) – Fraction of the day that must have data.

	freq (str, default None) – The expected frequency of the data in series. If none then
the frequency is inferred from the data.

	Returns

	A series of booleans with True for each value that is part of
a day with completeness greater than minimum_completeness.

	Return type

	Series

	Raises

	ValueError – See completeness_score().

See also

completeness_score()

pvanalytics.quality.gaps.start_stop_dates

	
pvanalytics.quality.gaps.start_stop_dates(series, days=10)

	Get the start and end of data excluding leading and trailing gaps.

	Parameters

	
	series (Series) – A DatetimeIndexed series of booleans.

	days (int, default 10) – The minimum number of consecutive days where every value in
series is True for data to start or stop.

	Returns

	
	start (Datetime or None) – The first valid day. If there are no sufficiently long periods
of valid days then None is returned.

	stop (Datetime or None) – The last valid day. None if start is None.

pvanalytics.quality.gaps.trim

	
pvanalytics.quality.gaps.trim(series, days=10)

	Mask the beginning and end of the data if not all True.

	Parameters

	
	series (Series) – A DatetimeIndexed series of booleans

	days (int, default 10) – Minimum number of consecutive days that are all True for
‘good’ data to start.

	Returns

	A series of booleans with True for all data points between the
first and last block of days consecutive days that are all
True in series. If series does not contain such a block of
consecutive True values, then the returned series will be
entirely False.

	Return type

	Series

See also

start_stop_dates()

pvanalytics.quality.gaps.trim_incomplete

	
pvanalytics.quality.gaps.trim_incomplete(series, minimum_completeness=0.333333, days=10, freq=None)

	Trim the series based on the completeness score.

Combines completeness_score() and trim().

	Parameters

	
	series (Series) – A DatetimeIndexed series.

	minimum_completeness (float, default 0.333333) – The minimum completeness score for each day.

	days (int, default 10) – The number of consecutive days with completeness greater than
minumum_completeness for the ‘good’ data to start or
end. See start_stop_dates() for more information.

	freq (str, default None) – The expected frequency of the series. See
completeness_score() fore more information.

	Returns

	A series of booleans with the same index as series with
False up to the first complete day, True between the first and
the last complete days, and False following the last complete
day.

	Return type

	Series

See also

trim(), completeness_score()

pvanalytics.quality.outliers.tukey

	
pvanalytics.quality.outliers.tukey(data, k=1.5)

	Identify outliers based on the interquartile range.

A value x is considered an outlier if it does not satisfy the
following condition

\[Q_1 - k(Q_3 - Q_1) \le x \le Q_3 + k(Q_3 - Q_1)\]

where \(Q_1\) is the value of the first quartile and
\(Q_3\) is the value of the third quartile.

	Parameters

	
	data (Series) – The data in which to find outliers.

	k (float, default 1.5) – Multiplier of the interquartile range. A larger value will be more
permissive of values that are far from the median.

	Returns

	A series of booleans with True for each value that is an
outlier.

	Return type

	Series

pvanalytics.quality.outliers.zscore

	
pvanalytics.quality.outliers.zscore(data, zmax=1.5)

	Identify outliers using the z-score.

Points with z-score greater than zmax are considered as outliers.

	Parameters

	
	data (Series) – A series of numeric values in which to find outliers.

	zmax (float) – Upper limit of the absolute values of the z-score.

	Returns

	A series of booleans with True for each value that is an
outlier.

	Return type

	Series

pvanalytics.quality.outliers.hampel

	
pvanalytics.quality.outliers.hampel(data, window=5, max_deviation=3.0, scale=None)

	Identify outliers by the Hampel identifier.

The Hampel identifier is computed according to 1.

	Parameters

	
	data (Series) – The data in which to find outliers.

	window (int or offset, default 5) – The size of the rolling window used to compute the Hampel
identifier.

	max_deviation (float, default 3.0) – Any value with a Hampel identifier > max_deviation standard
deviations from the median is considered an outlier.

	scale (float, optional) – Scale factor used to estimate the standard deviation as
\(MAD / scale\). If scale=None (default), then the scale
factor is taken to be scipy.stats.norm.ppf(3/4.) (approx. 0.6745),
and \(MAD / scale\) approximates the standard deviation
of Gaussian distributed data.

	Returns

	True for each value that is an outlier according to its Hampel
identifier.

	Return type

	Series

References

	1

	Pearson, R.K., Neuvo, Y., Astola, J. et al. Generalized
Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 87
(2016). https://doi.org/10.1186/s13634-016-0383-6

pvanalytics.quality.time.spacing

	
pvanalytics.quality.time.spacing(times, freq)

	Check that the spacing between times conforms to freq.

	Parameters

	
	times (DatetimeIndex) –

	freq (string or Timedelta) – Expected frequency of times.

	Returns

	True when the difference between one time and the time before
it conforms to freq.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.time.shifts_ruptures

	
pvanalytics.quality.time.shifts_ruptures(event_times, reference_times, period_min=2, shift_min=15, round_up_from=None, prediction_penalty=13)

	Identify time shifts using the ruptures library.

Compares the event time in the expected time zone (reference_times)
with the actual event time in event_times.

The Pelt changepoint detection method is applied to the difference
between event_times and reference_times. For each period between
change points the mode of the difference is rounded to a multiple of
shift_min and returned as the time-shift for all days in that
period.

	Parameters

	
	event_times (Series) – Time of an event in minutes since midnight. Should be a time series
of integers with a single value per day. Typically the time mid-way
between sunrise and sunset.

	reference_times (Series) – Time of event in minutes since midnight for each day in the expected
timezone. For example, passing solar transit time in a fixed offset
time zone can be used to detect daylight savings shifts when it is
unknown whether or not event_times is in a fixed offset time zone.

	period_min (int, default 2) – Minimum number of days between shifts. Must be less than or equal to
the number of days in event_times. [days]

Increasing this parameter will make the result less sensitive to
transient shifts. For example if your intent is to find and correct
daylight savings time shifts passing period_min=60 can give good
results while excluding shorter periods that appear shifted.

	shift_min (int, default 15) – Minimum shift amount in minutes. All shifts are rounded to a multiple
of shift_min. [minutes]

	round_up_from (int, optional) – The number of minutes greater than a multiple of shift_min for a
shift to be rounded up. If a shift is less than round_up_from then
it will be rounded towards 0. If not specified then the shift will
be rounded up from shift_min // 2. Using a larger value will
effectively make the shift detection more conservative as small
variations will tend to be rounded to zero. [minutes]

	prediction_penalty (int, default 13) – Penalty used in assessing change points.
See :py:method:`ruptures.detection.Pelt.predict` for more information.

	Returns

	
	shifted (Series) – Boolean series indicating whether there appears to be a time
shift on that day.

	shift_amount (Series) – Time shift in minutes for each day in event_times. These times
can be used to shift the data into the same time zone as
reference_times.

	Raises

	ValueError – If the number of days in event_times is less than period_min.

Notes

Timestamped data from monitored PV systems may not always be localized
to a consistent timezone. In some cases, data is timestamped with
local time that may or may not be adjusted for daylight savings time
transitions. This function helps detect issues of this sort, by
detecting points where the time of some daily event (e.g. solar noon)
changes significantly with respect to a reference time for the event.
If the data’s timestamps have not been adjusted for daylight savings
transitions, the time of day at solar noon will change by roughly 60
minutes in the days before and after the transition.

To use this changepoint detection method to determine if your data’s
timestamps involve daylight savings transitions, first reduce your PV
system data (irradiance or power) to a daily time series, with each
point being the observed midday time in minutes. For example, if
sunrise and sunset are inferred from the PV system data, the midday
time can be inferred as the average of each day’s sunrise and sunset
time of day. To establish the expected midday time, calculate solar
transit time in time of day. This function detects shifts in the
difference between the observed and expected midday times, and
returns (here I’m unclear what is being returned)

Derived from the PVFleets QA project.

pvanalytics.quality.time.has_dst

	
pvanalytics.quality.time.has_dst(events, tz, window=7, min_difference=45, missing='raise')

	Return True if events appears to have daylight savings shifts
at the dates on which tz transitions to or from daylight savings
time.

The mean event time in minutes since midnight is calculated
over the window days before and after the date of each daylight
savings transition in tz. For each date, the two mean event times
(before and after) are compared, and if the difference is greater
than min_difference then a shift has occurred on that date.

	Parameters

	
	events (Series) – Series with one timestamp for each day. The timestamp should
correspond to an event that occurs at roughly the same time on
each day. For example,
you may pass sunrise, sunset, or solar transit time. events need
not be localized.

	tz (str) – Name of a timezone that observes daylight savings and has the same
or similar UTC offset as the expected time zone for events.

	window (int, default 7) – Number of days before and after the shift date to consider. When
passing rounded timestamps in events it may be necessary to
use a smaller window. [days]

	min_difference (int, default 45) – Minimum difference between the mean event time before the shift
date and the mean event time after the event time. If the difference
is greater than min_difference a shift has occurred on that date.
[minutes]

	missing (str, default 'raise') – Whether to raise an exception or issue a warning when there is
no data at a transition date. Can be ‘raise’ or ‘warn’. If ‘warn’
and there is no data adjacent to a transition date, False is
returned for that date.

	Returns

	Boolean Series with the same index as events True for dates that
appear to have daylight savings transitions.

	Return type

	Series

	Raises

	ValueError – If there is no data in the window days before or after a shift
 date in events.

pvanalytics.quality.util.check_limits

	
pvanalytics.quality.util.check_limits(val, lower_bound=None, upper_bound=None, inclusive_lower=False, inclusive_upper=False)

	Check whether a value falls withing the given limits.

At least one of lower_bound or upper_bound must be provided.

	Parameters

	
	val (array_like) – Values to test.

	lower_bound (float, default None) – Lower limit.

	upper_bound (float, default None) – Upper limit.

	inclusive_lower (bool, default False) – Whether the lower bound is inclusive (val >= lower_bound).

	inclusive_upper (bool, default False) – Whether the upper bound is inclusive (val <= upper_bound).

	Returns

	True for every value in val that is between lower_bound
and upper_bound.

	Return type

	array_like

	Raises

	ValueError – if lower_bound nor upper_bound is provided.

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.util.daily_min

	
pvanalytics.quality.util.daily_min(series, minimum, inclusive=False)

	Return True for data on days when the day’s minimum exceeds minimum.

	Parameters

	
	series (Series) – A Datetimeindexed series of floats.

	minimum (float) – The smallest acceptable value for the daily minimum.

	inclusive (boolean, default False) – Use greater than or equal to when comparing daily minimums from
series to minimum.

	Returns

	True for values on days where the minimum value recorded on
that day is greater than (or equal to) minimum.

	Return type

	Series

Notes

This function is derived from code in the pvfleets_qa_analysis
project under the terms of the 3-clause BSD license. Copyright (c)
2020 Alliance for Sustainable Energy, LLC.

pvanalytics.quality.weather.relative_humidity_limits

	
pvanalytics.quality.weather.relative_humidity_limits(relative_humidity, limits=(0, 100))

	Identify relative humidity values that are within limits.

	Parameters

	
	relative_humidity (Series) – Relative humidity in %.

	limits (tuple, default (0, 100)) – (lower bound, upper bound) for relative humidity.

	Returns

	True if relative_humidity >= lower bound and
relative_humidity <= upper_bound.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.weather.temperature_limits

	
pvanalytics.quality.weather.temperature_limits(air_temperature, limits=(-35.0, 50.0))

	Identify temperature values that are within limits.

	Parameters

	
	air_temperature (Series) – Air temperature [C].

	temp_limits (tuple, default (-35, 50)) – (lower bound, upper bound) for temperature.

	Returns

	True if air_temperature > lower bound and air_temperature
< upper bound.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.weather.wind_limits

	
pvanalytics.quality.weather.wind_limits(wind_speed, limits=(0.0, 50.0))

	Identify wind speed values that are within limits.

	Parameters

	
	wind_speed (Series) – Wind speed in \(m/s\)

	wind_limits (tuple, default (0, 50)) – (lower bound, upper bound) for wind speed.

	Returns

	True if wind_speed >= lower bound and wind_speed < upper
bound.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.quality.weather.module_temperature_check

	
pvanalytics.quality.weather.module_temperature_check(module_temperature, irradiance, correlation_min=0.5)

	Test whether the module temperature is correlated with irradiance.

	Parameters

	
	module_temperature (Series) – Time series of module temperature.

	irradiance (Series) – Time series of irradiance with the same index as
module_temperature. This should be of relatively high
quality (outliers and other problems removed).

	correlation_min (float, default 0.5) – Minimum correlation between module_temperature and
irradiance for the module temperature sensor to ‘pass’

	Returns

	True if the correlation between module_temperature and
irradiance exceeds correlation_min.

	Return type

	bool

pvanalytics.features.clipping.levels

	
pvanalytics.features.clipping.levels(ac_power, window=4, fraction_in_window=0.75, rtol=0.005, levels=2)

	Label clipping in AC power data based on levels in the data.

	Parameters

	
	ac_power (Series) – Time series of AC power measurements.

	window (int, default 4) – Number of data points in a window used to detect clipping.

	fraction_in_window (float, default 0.75) – Fraction of points which indicate clipping if AC power at each
point is close to the plateau level.

	rtol (float, default 5e-3) – A point is close to a clipped level M if
abs(ac_power - M) < rtol * max(ac_power)

	levels (int, default 2) – Number of clipped power levels to consider.

	Returns

	True when clipping is indicated.

	Return type

	Series

Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

pvanalytics.features.clipping.threshold

	
pvanalytics.features.clipping.threshold(ac_power, slope_max=0.0035, power_min=0.75, power_quantile=0.995, freq=None)

	Detect clipping based on a maximum power threshold.

This is a two-step process. First a clipping threshold is
identified, then any values in ac_power greater than or equal to
that threshold are flagged.

The clipping threshold is determined by computing a ‘daily power
curve’ which is the power_quantile quantile of all values in
ac_power at each minute of the day. This gives a rough estimate
of the maximum power produced at each minute of the day.

The daily power curve is normalized by its maximum and the minutes
of the day are identified where the normalized curve’s slope is
less than slope_max. If there is a continuous period of time
spanning at least one hour where the slope is less than
slope_max and the value of the normalized daily power curve is
greater than power_min times the median of the normalized daily
power curve then the data has clipping in it. If no sufficiently
long period with both a low slope and high power exists then there
is no clipping in the data. The average of the daily power curve
(not normalized) during the longest period that satisfies the
criteria above is the clipping threshold.

	Parameters

	
	ac_power (Series) – DatetimeIndexed series of AC power data.

	slope_max (float, default 0.0035) – Maximum absolute value of slope of AC power quantile for
clipping to be indicated. The default value has been derived
empirically to prevent false positives for tracking PV
systems.

	power_min (float, default 0.75) – The power during periods with slope less than slope_max must
be greater than power_min times the median normalized
daytime power.

	power_quantile (float, default 0.995) – Quantile used to calculate the daily power curve.

	freq (string, default None) – A pandas string offset giving the frequency of data in
ac_power. If None then the frequency is inferred from the
series index.

	Returns

	True when ac_power is greater than or equal to the clipping
threshold.

	Return type

	Series

Notes

This function is based on the pvfleets_qa_analysis project.

pvanalytics.features.clipping.geometric

	
pvanalytics.features.clipping.geometric(ac_power, window=None, slope_max=0.2, freq=None, tracking=False)

	Identify clipping based on a the shape of the ac_power
curve on each day.

Each day is checked for periods where the slope of ac_power
is small. The power values in these periods are used to calculate
a minimum and a maximum clipped power level for that day. Any
power values that are within this range are flagged as
clipped. The methodology for computing the thresholds varies
depending on the frequency of ac_power. For high frequency
data (less than 10 minute timestamp spacing) the minimum
clipped power is the mean of the low-slope period(s) on that
day minus 2 times the standard deviation in the same period(s).
For lower frequency data the absolute minimum and maximum of
the low slope period(s) on each day are used.

If the frequency of ac_power is less than ten minutes, then
ac_power is down-sampled to 15 minutes and the mean value in
each 15-minute period is used to reduce noise inherent in
high frequency data.

	Parameters

	
	ac_power (Series) – AC power data.

	window (int, optional) – Size of the rolling window used to identify low-slope
periods. If not specified and tracking is False then
window=3 is used. If not specified and tracking is
True then window=5 is used.

	slope_max (float, default 0.2) – Maximum difference in maximum and minimum power for a
window to be flagged as clipped. Units are percent of
average power in the interval.

	freq (str, optional) – Frequency of ac_power. If not specified then
pandas.infer_freq() is used.

	tracking (bool, default False) – If True then a larger default window is used. If window
is specified then tracking has no affect.

	Returns

	Boolean Series with True for values that appear to be clipped.

	Return type

	Series

	Raises

	ValueError – If the index of ac_power is not sorted.

Notes

Based on code from the PVFleets QA project.

pvanalytics.features.clearsky.reno

	
pvanalytics.features.clearsky.reno(ghi, ghi_clearsky)

	Identify times when GHI is consistent with clearsky conditions.

Uses the function pvlib.clearsky.detect_clearsky().

Note

Must be given GHI data with regular (constant) time intervals
of 15 minutes or less.

	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\). Must have an
index with time intervals of at most 15 minutes.

	ghi_clearsky (Series) – Global horizontal irradiance in \(W/m^2\) under clearsky
conditions.

	Returns

	True when clear sky conditions are indicated.

	Return type

	Series

	Raises

	ValueError – if the time intervals are greater than 15 minutes.

Notes

Clear-sky conditions are inferred when each of six criteria are
met; see pvlib.clearsky.detect_clearsky() for references
and details. Threshold values for each criterion were originally
developed for ten minute windows containing one-minute data
1. As indicated in 2, the algorithm also works for longer
windows and data at different intervals if threshold criteria are
roughly scaled to the window length. Here, the threshold values
are based on [1] with the scaling indicated in [2].

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References

	1

	Reno, M.J. and C.W. Hansen, “Identification of periods of
clear sky irradiance in time series of GHI measurements”
Renewable Energy, v90, p. 520-531, 2016.

	2

	B. H. Ellis, M. Deceglie and A. Jain, “Automatic Detection
of Clear-Sky Periods From Irradiance Data,” in IEEE Journal of
Photovoltaics, vol. 9, no. 4, pp. 998-1005, July 2019. doi:
10.1109/JPHOTOV.2019.2914444

pvanalytics.features.orientation.fixed_nrel

	
pvanalytics.features.orientation.fixed_nrel(power_or_irradiance, daytime, r2_min=0.94, min_hours=5, peak_min=None)

	Flag days that match the profile of a fixed PV system on a sunny day.

This algorithm relies on the observation that the power profile of a
fixed tilt PV system often resembles a quadratic polynomial on a
sunny day, with a single peak when the sun is near the system azimuth.

A day is marked True when the \(r^2\) for a quadratic fit to the
power data is greater than r2_min.

	Parameters

	
	power_or_irradiance (Series) – Timezone localized series of power or irradiance measurements.

	daytime (Series) – Boolean series with True for times that are during the
day. For best results this mask should exclude early morning
and evening as well as night. Data at these times may have
problems with shadows that interfere with curve fitting.

	r2_min (float, default 0.94) – Minimum \(r^2\) of a quadratic fit for a day to be marked True.

	min_hours (float, default 5.0) – Minimum number of hours with data to attempt a fit on a day.

	peak_min (float, default None) – The maximum power_or_irradiance value for a day must be
greater than peak_min for a fit to be attempted. If the
maximum for a day is less than peak_min then the day will be
marked False.

	Returns

	True for values on days where power_or_irradiance matches
the expected parabolic profile for a fixed PV system on a sunny day.

	Return type

	Series

Notes

This algorithm is based on the PVFleets QA Analysis
project. Copyright (c) 2020 Alliance for Sustainable Energy, LLC.

pvanalytics.features.orientation.tracking_nrel

	
pvanalytics.features.orientation.tracking_nrel(power_or_irradiance, daytime, r2_min=0.915, r2_fixed_max=0.96, min_hours=5, peak_min=None, quadratic_mask=None)

	Flag days that match the profile of a single-axis tracking PV system
on a sunny day.

This algorithm relies on the observation that the power profile of
a single-axis tracking PV system tends to resemble a quartic
polynomial on a sunny day, I.e., two peaks are observed, one
before and one after the sun crosses the tracker azimuth. By
contrast, the power profile for a fixed tilt PV system often
resembles a quadratic polynomial on a sunny day, with a single
peak when the sun is near the system azimuth.

The algorithm fits both a quartic and a quadratic polynomial to
each day’s data. A day is marked True if the quartic fit has a
sufficiently high \(r^2\) and the quadratic fit has a
sufficiently low \(r^2\). Specifically, a day is marked True
when three conditions are met:

	a restricted quartic 1 must fit the data with \(r^2\)
greater than r2_min

	the \(r^2\) for the restricted quartic fit must be greater
than the \(r^2\) for a quadratic fit

	the \(r^2\) for a quadratic fit must be less than
r2_fixed_max

Values on days where any one of these conditions is not met are
marked False.

	1

	The specific quartic used for this fit is centered within
70 minutes of 12:00, the y-value at the center must be within
15% of the median for the day, and it must open downwards.

	Parameters

	
	power_or_irradiance (Series) – Timezone localized series of power or irradiance measurements.

	daytime (Series) – Boolean series with True for times that are during the
day. For best results this mask should exclude early morning
and late afternoon as well as night. Data at these times may have
problems with shadows that interfere with curve fitting.

	r2_min (float, default 0.915) – Minimum \(r^2\) of a quartic fit for a day to be marked True.

	r2_fixed_max (float, default 0.96) – If the \(r^2\) of a quadratic fit exceeds
r2_fixed_max, then tracking/fixed cannot be distinguished
and the day is marked False.

	min_hours (float, default 5.0) – Minimum number of hours with data to attempt a fit on a day.

	peak_min (float, default None) – The maximum power_or_irradiance value for a day must be
greater than peak_min for a fit to be attempted. If the
maximum for a day is less than peak_min then the day will be
marked False.

	quadratic_mask (Series, default None) – If None then daytime is used. This Series is used to remove
morning and afternoon times from the data before applying a
quadratic fit. The mask should
typically exclude more data than daytime in order to
eliminate long tails in the morning or afternoon that can
appear if a tracker is stuck in a West or East orientation.

	Returns

	Boolean series with True for every value on a day that has a
tracking profile (see criteria above).

	Return type

	Series

Notes

This algorithm is based on the PVFleets QA Analysis
project. Copyright (c) 2020 Alliance for Sustainable Energy, LLC.

pvanalytics.features.daytime.power_or_irradiance

	
pvanalytics.features.daytime.power_or_irradiance(series, outliers=None, low_value_threshold=0.003, low_median_threshold=0.0015, low_diff_threshold=0.0005, median_days=7, clipping=None, freq=None, correction_window=31, hours_min=5, day_length_difference_max=30, day_length_window=14)

	Return True for values that are during the day.

After removing outliers and normalizing the data, a time is
classified as night when two of the following three criteria are
satisfied:

	near-zero value

	near-zero first-order derivative

	near-zero rolling median at the same time over the surrounding
week (see median_days)

Mid-day times where power goes near zero or
stops changing may be incorrectly classified as night. To correct
these errors, night or day periods with duration that is too long or
too short are identified, and times in these periods are re-classified
to have the majority value at the same time on preceding and
following days (as set by correction_window).

Finally any values that are True in clipping are marked as day.

	Parameters

	
	series (Series) – Time series of power or irradiance.

	outliers (Series, optional) – Boolean time series with True for values in series that are
outliers.

	low_value_threshold (float, default 0.003) – Maximum normalized power or irradiance value for a time to be
considered night.

	low_median_threshold (float, default 0.0015) – Maximum rolling median of power or irradiance for a time to be
considered night.

	low_diff_threshold (float, default 0.0005) – Maximum derivative of normalized power or irradiance for a time
to be considered night.

	median_days (int, default 7) – Number of days to use to calculate the rolling median at each
minute. [days]

	clipping (Series, optional) – True when clipping indicated. Any values where clipping is
indicated are automatically considered ‘daytime’.

	freq (str, optional) – A pandas freqstr specifying the expected timestamp spacing for
the series. If None, the frequency will be inferred from the index.

	correction_window (int, default 31) – Number of adjacent days to examine when correcting
day/night classification errors. [days]

	hours_min (float, default 5) – Minimum number of hours in a contiguous period of day or
night. A day/night period shorter than hours_min is
flagged for error correction. [hours]

	day_length_difference_max (float, default 30) – Days with length that is day_length_difference_max minutes less
than the median length of surrounding days are flagged for
corrections.

	day_length_window (int, default 14) – The length of the rolling window used for calculating the
median length of the day when correcting errors in the morning
or afternoon. [days]

	Returns

	Boolean time series with True for times that are during the
day.

	Return type

	Series

Notes

NA values are treated like zeros.

Derived from the PVFleets QA Analysis project.

pvanalytics.system.Tracker

	
class pvanalytics.system.Tracker

	Enum describing the orientation of a PV System.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Attributes

	FIXED

	A system with a fixed azimuth and tilt.

	TRACKING

	A system equipped with a tracker.

	UNKNOWN

	A system where the tracking cannot be determined.

pvanalytics.system.is_tracking_envelope

	
pvanalytics.system.is_tracking_envelope(series, daytime, clipping, clip_max=0.1, envelope_quantile=0.995, envelope_min_fraction=0.05, fit_median=True, median_min_fraction=0.025, median_r2_min=0.9, fit_params=None, seasonal_split='north-america')

	Infer whether the system is equipped with a tracker.

Data is grouped by season (optional) and within each season by the
minute of the day. A maximum power or irradiance envelope (the
envelope_quantile value at each minute) is calculated. Quadratic
and quartic curves are fit to this daily envelope and the \(r^2\)
of the curve fits are used determine whether the system is tracking
or fixed.

If the quadratic fit is a sufficiently good in both seasons, then
Tracker.FIXED is returned.

If, in both seasons, the quartic fit is sufficiently good and the
quadratic fit is sufficiently bad, then Tracker.TRACKING
is returned.

If neither fit is sufficiently good, or the results from each season
disagree, then Tracker.UNKNOWN is returned.

Optionally, an additional fit is made to the median of the
data at each minute to confirm the determination of tracking
or fixed. If performed, this result must be consistent with the fit
to the upper envelope. If not, Tracker.UNKNOWN
is returned.

	Parameters

	
	series (Series) – Timezone localized Series of power or irradiance data.

	daytime (Series) – Boolean Series with True for times that are during the day.

	clipping (Series) – Boolean Series identifying where power or irradiance is being
clipped.

	clip_max (float, default 0.1) – If the fraction of data flagged as clipped is greater than
clip_max then it cannot be determined whether the system is
tracking or fixed and Tracker.UNKNOWN is returned.

	envelope_quantile (float, default 0.995) – Quantile used to determine the upper power or irradiance
envelope.

	envelope_min_fraction (float, default 0.05) – After calculating the power or irradiance envelope, data less
than envelope_min_fraction times the maximum of the envelope
is removed. This excludes data from morning and evening that
may interfere with curve fitting.

	fit_median (boolean, default True) – Perform a secondary fit with the median power or irradiance to
validate that the profile is consistent through the entire
data set.

	median_min_fraction (float, default 0.025) – After calculating the median power or irradiance at each
minute, data less than median_min_fraction times the maximum
is removed. This excludes data from morning and evening that
may interfere with curve fitting.

	median_r2_min (float, default 0.9) – Minimum \(r^2\) for a curve fit to the median power or
irradiance at each minute of the day (Applies only if
fit_median is True).

	fit_params (dict or None, default None) – Minimum r-squared for curve fits according to the fraction of
data with clipping. This should be a dictionary with tuple
keys and dictionary values. The key must be a 2-tuple of
(clipping_min, clipping_max) where the values specify the
minimum and maximum fraction of data with clipping for which
the associated fit parameters are applicable. The values of
the dictionary are themselves dictionaries with keys
'fixed' and 'tracking', which give the minimum
\(r^2\) for the curve fits, and 'fixed_max' which
gives the maximum \(r^2\) for a quadratic fit if the
system appears to have a tracker.

If None PVFLEETS_FIT_PARAMS is used.

	seasonal_split (dict or str or None, default 'north-america') – A dictionary with two keys, ‘winter’ and ‘summer’ with a list of
integers specifying the winter months and summer months respectively.
Seasonal grouping can be disabled by passing seasonal_split=None.
Either season can be ignored by passing a dict that omits the key
or sets its value to None. The default value, ‘north-america’ uses
{'winter': [11, 12, 1, 2], 'summer': [5, 6, 7, 8]} which
works well for PV systems located in North America.

	Returns

	The tracking determined by curve fitting (FIXED, TRACKING, or
UNKNOWN).

	Return type

	Tracker

Notes

Derived from the PVFleets QA Analysis project.

See also

pvanalytics.features.orientation.tracking_nrel(), pvanalytics.features.orientation.fixed_nrel()

pvanalytics.system.infer_orientation_daily_peak

	
pvanalytics.system.infer_orientation_daily_peak(power_or_poa, sunny, tilts, azimuths, solar_azimuth, solar_zenith, ghi, dhi, dni)

	Determine system azimuth and tilt from power or POA using solar
azimuth at the daily peak.

The time of the daily peak is estimated by fitting a quadratic to
to the data for each day in power_or_poa and finding the vertex
of the fit. A brute force search is performed on clearsky POA
irradiance for all pairs of candidate azimuths and tilts
(azimuths and tilts) to find the pair that results in the
closest azimuth to the azimuths calculated at the peak times from
the curve fitting step. Closest is determined by minimizing the
sum of squared difference between the solar azimuth at the peak
time in power_or_poa and the solar azimuth at maximum clearsky
POA irradiance.

The accuracy of the tilt and azimuth returned by this function will
vary with the time-resolution of the clearsky and solar position
data. For the best accuracy pass solar_azimuth, solar_zenith,
and the clearsky data (ghi, dhi, and dni) with one-minute
timestamp spacing. If solar_azimuth has timestamp spacing less
than one minute it will be resampled and interpolated to estimate
azimuth at each minute of the day. Regardless of the timestamp
spacing these parameters must cover the same days as
power_or_poa.

	Parameters

	
	power_or_poa (Series) – Timezone localized series of power or POA irradiance
measurements.

	sunny (Series) – Boolean series with True for values during clearsky
conditions.

	tilts (array-like) – Candidate tilts in degrees.

	azimuths (array-like) – Candidate azimuths in degrees.

	solar_azimuth (Series) – Time series of solar azimuth.

	solar_zenith (Series) – Time series of solar zenith.

	ghi (Series) – Clear sky GHI.

	dhi (Series) – Clear sky DHI.

	dni (Series) – Clear sky DNI.

	Returns

	
	azimuth (float)

	tilt (float)

Notes

Based on PVFleets QA project.

pvanalytics.system.infer_orientation_fit_pvwatts

	
pvanalytics.system.infer_orientation_fit_pvwatts(power_ac, ghi, dhi, dni, solar_zenith, solar_azimuth, temperature=25, wind_speed=0, temperature_coefficient=-0.004, temperature_model_parameters=None)

	Get the tilt and azimuth that give PVWatts output that most closely
fits the data in power_ac.

Input data power_ac, ghi, dhi, dni should reflect clear-sky
conditions.

Uses non-linear least squares to optimize over four free variables
to find the values that result in the best fit between power modeled
using PVWatts and power_ac. The four free variables are

	surface tilt

	surface azimuth

	the DC capacity of the system

	the DC input limit of the inverter.

Of these four parameters, only tilt and azimuth are returned. While, DC
capacity and the DC input limit are calculated, their values may not be
accurate. While its value is not returned, because the DC input limit is
used as a free variable for the optimization process, this function
can operate on power_ac data that includes inverter clipping.

All parameters passed as a Series must have the same index and must not
contain any undefined values (i.e. NaNs). If any input contains NaNs a
ValueError is raised.

	Parameters

	
	power_ac (Series) – AC power from the system in clear sky conditions.

	ghi (Series) – Clear sky GHI with same index as power_ac. [W/m^2]

	dhi (Series) – Clear sky DHI with same index as power_ac. [W/m^2]

	dni (Series) – Clear sky DNI with same index as power_ac. [W/m^2]

	solar_zenith (Series) – Solar zenith. [degrees]

	solar_azimuth (Series) – Solar azimuth. [degrees]

	temperature (float or Series, default 25) – Air temperature at which to model the hypothetical system. If a
float then a constant temperature is used. If a Series, must have
the same index as power_ac. [C]

	wind_speed (float or Series, default 0) – Wind speed. If a float then a constant wind speed is used. If a
Series, must have the same index as power_ac. [m/s]

	temperature_model_parameters (dict, optional) – Parameters fot the cell temperature model. If not specified
pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][
'open_rack_glass_glass'] is used. See
pvlib.temperature.sapm_cell() for more information.

	Returns

	
	surface_tilt (float) – Tilt of the array. [degrees]

	surface_azimuth (float) – Azimuth of the array. [degrees]

	r_squared (float) – \(r^2\) value for the fit at the returned orientation.

	Raises

	ValueError – If any input passed as a Series contains undefined values (i.e. NaNs).

pvanalytics.metrics.performance_ratio_nrel

	
pvanalytics.metrics.performance_ratio_nrel(poa_global, temp_air, wind_speed, pac, pdc0, a=-3.56, b=-0.075, deltaT=3, gamma_pdc=-0.00433)

	Calculate NREL Performance Ratio.

See equation [5] in Weather-Corrected Performance Ratio 1 for details
on the weighted method for Tref.

	Parameters

	
	poa_global (numeric) – Total incident irradiance [W/m^2].

	temp_air (numeric) – Ambient dry bulb temperature [C].

	wind_speed (numeric) – Wind speed at a height of 10 meters [m/s].

	pac (float) – AC power [kW].

	pdc0 (float) – Power of the modules at 1000 W/m2 and cell reference temperature [kW].

	a (float) – Parameter \(a\) in SAPM model [unitless].

	b (float) – Parameter \(b\) in in SAPM model [s/m].

	deltaT (float) – Parameter \(\Delta T\) in SAPM model [C].

	gamma_pdc (float) – The temperature coefficient in units of 1/C. Typically -0.002 to
-0.005 per degree C [1/C].

	Returns

	performance_ratio – Performance Ratio of data.

	Return type

	float

References

	1

	Dierauf et al. “Weather-Corrected Performance Ratio”. NREL, 2013.
https://www.nrel.gov/docs/fy13osti/57991.pdf

Release Notes

These are the bug-fixes, new features, and improvements for each release.

	0.1.0 (November 20, 2020)
	API Changes

	Enhancements

	Bug Fixes

	Contributors

0.1.0 (November 20, 2020)

This is the first release of PVAnalytics. As such, the list of “changes”
below is not specific. Future releases will describe specific changes here along
with references to the relevant github issue and pull requests.

API Changes

Enhancements

	Quality control functions for irradiance, weather and time series data. See
pvanalytics.quality for content.

	Feature labeling functions for clipping, clearsky, daytime, and orientation.
See pvanalytics.features for content.

	System parameter inference for tilt, azimuth, and whether the system is
tracking or fixed. See pvanalytics.system for content.

	NREL performance ratio metric
(pvanalytics.metrics.performance_ratio_nrel()).

Bug Fixes

Contributors

	Will Vining (@wfvining [https://github.com/wfvining])

	Cliff Hansen (@cwhanse [https://github.com/cwhanse])

	Saurabh Aneja (@spaneja [https://github.com/spaneja])

Special thanks to Matt Muller and Kirsten Perry of NREL for their assistance
in adapting components from the PVFleets QA project to PVAnalytics.

Index

 _
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W
 | Z

_

 	
 	__init__() (pvanalytics.system.Tracker method)

C

 	
 	check_dhi_limits_qcrad() (in module pvanalytics.quality.irradiance)

 	check_dni_limits_qcrad() (in module pvanalytics.quality.irradiance)

 	check_ghi_limits_qcrad() (in module pvanalytics.quality.irradiance)

 	check_irradiance_consistency_qcrad() (in module pvanalytics.quality.irradiance)

 	
 	check_irradiance_limits_qcrad() (in module pvanalytics.quality.irradiance)

 	check_limits() (in module pvanalytics.quality.util)

 	clearsky_limits() (in module pvanalytics.quality.irradiance)

 	complete() (in module pvanalytics.quality.gaps)

 	completeness_score() (in module pvanalytics.quality.gaps)

D

 	
 	daily_insolation_limits() (in module pvanalytics.quality.irradiance)

 	
 	daily_min() (in module pvanalytics.quality.util)

F

 	
 	fixed_nrel() (in module pvanalytics.features.orientation)

G

 	
 	geometric() (in module pvanalytics.features.clipping)

H

 	
 	hampel() (in module pvanalytics.quality.outliers)

 	
 	has_dst() (in module pvanalytics.quality.time)

I

 	
 	infer_orientation_daily_peak() (in module pvanalytics.system)

 	infer_orientation_fit_pvwatts() (in module pvanalytics.system)

 	
 	interpolation_diff() (in module pvanalytics.quality.gaps)

 	is_tracking_envelope() (in module pvanalytics.system)

L

 	
 	levels() (in module pvanalytics.features.clipping)

M

 	
 	module_temperature_check() (in module pvanalytics.quality.weather)

P

 	
 	performance_ratio_nrel() (in module pvanalytics.metrics)

 	
 	power_or_irradiance() (in module pvanalytics.features.daytime)

R

 	
 	relative_humidity_limits() (in module pvanalytics.quality.weather)

 	
 	reno() (in module pvanalytics.features.clearsky)

S

 	
 	shifts_ruptures() (in module pvanalytics.quality.time)

 	spacing() (in module pvanalytics.quality.time)

 	
 	stale_values_diff() (in module pvanalytics.quality.gaps)

 	stale_values_round() (in module pvanalytics.quality.gaps)

 	start_stop_dates() (in module pvanalytics.quality.gaps)

T

 	
 	temperature_limits() (in module pvanalytics.quality.weather)

 	threshold() (in module pvanalytics.features.clipping)

 	Tracker (class in pvanalytics.system)

 	
 	tracking_nrel() (in module pvanalytics.features.orientation)

 	trim() (in module pvanalytics.quality.gaps)

 	trim_incomplete() (in module pvanalytics.quality.gaps)

 	tukey() (in module pvanalytics.quality.outliers)

W

 	
 	wind_limits() (in module pvanalytics.quality.weather)

Z

 	
 	zscore() (in module pvanalytics.quality.outliers)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 PVAnalytics

 		
 API Reference

 		
 Quality

 		
 Irradiance

 		
 Gaps

 		
 Outliers

 		
 Time

 		
 Utilities

 		
 Weather

 		
 Features

 		
 Clipping

 		
 Clearsky

 		
 Orientation

 		
 Daytime

 		
 System

 		
 Tracking

 		
 Orientation

 		
 Metrics

 		
 Performance Ratio

 		
 Release Notes

 		
 0.1.0 (November 20, 2020)

 		
 API Changes

 		
 Enhancements

 		
 Bug Fixes

 		
 Contributors

