
PVAnalytics

pvlib

May 28, 2020

CONTENTS:

1 Contents 3
1.1 API Reference . 3

2 Indices and tables 19

Index 21

i

ii

PVAnalytics

PVAnalytics is a python library that supports analytics for PV systems. It provides functions for quality control,
filtering, and feature labeling and other tools supporting the analysis of PV system-level data.

The source code for PVAnalytics is hosted on github.

CONTENTS: 1

https://github.com/pvlib/pvanalytics

PVAnalytics

2 CONTENTS:

CHAPTER

ONE

CONTENTS

1.1 API Reference

1.1.1 Quality

Irradiance

The check_*_limits_qcrad functions use the QCRad algorithm1 to identify irradiance measurements that are
beyond physical limits.

quality.irradiance.
check_ghi_limits_qcrad(. . .)

Test for physical limits on GHI using the QCRad crite-
ria.

quality.irradiance.
check_dhi_limits_qcrad(. . .)

Test for physical limits on DHI using the QCRad crite-
ria.

quality.irradiance.
check_dni_limits_qcrad(. . .)

Test for physical limits on DNI using the QCRad crite-
ria.

pvanalytics.quality.irradiance.check_ghi_limits_qcrad

pvanalytics.quality.irradiance.check_ghi_limits_qcrad(ghi, solar_zenith, dni_extra,
limits=None)

Test for physical limits on GHI using the QCRad criteria.

Test is applied to each GHI value. A GHI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

𝑢𝑏 = 𝑚𝑖𝑛+𝑚𝑢𝑙𝑡 * 𝑑𝑛𝑖_𝑒𝑥𝑡𝑟𝑎 * 𝑐𝑜𝑠(𝑠𝑜𝑙𝑎𝑟_𝑧𝑒𝑛𝑖𝑡ℎ)𝑒𝑥𝑝

Parameters

• ghi (Series) – Global horizontal irradiance in 𝑊/𝑚2

• solar_zenith (Series) – Solar zenith angle in degrees

• dni_extra (Series) – Extraterrestrial normal irradiance in 𝑊/𝑚2

• limits (dict, default QCRAD_LIMITS) – Must have keys ‘ghi_ub’ and ‘ghi_lb’.
For ‘ghi_ub’ value is a dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For ‘ghi_lb’
value is a float.

1 C. N. Long and Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

3

PVAnalytics

Returns True where value passes limits test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.irradiance.check_dhi_limits_qcrad

pvanalytics.quality.irradiance.check_dhi_limits_qcrad(dhi, solar_zenith, dni_extra,
limits=None)

Test for physical limits on DHI using the QCRad criteria.

Test is applied to each DHI value. A DHI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

𝑢𝑏 = 𝑚𝑖𝑛+𝑚𝑢𝑙𝑡 * 𝑑𝑛𝑖_𝑒𝑥𝑡𝑟𝑎 * 𝑐𝑜𝑠(𝑠𝑜𝑙𝑎𝑟_𝑧𝑒𝑛𝑖𝑡ℎ)𝑒𝑥𝑝

Parameters

• dhi (Series) – Diffuse horizontal irradiance in 𝑊/𝑚2

• solar_zenith (Series) – Solar zenith angle in degrees

• dni_extra (Series) – Extraterrestrial normal irradiance in 𝑊/𝑚2

• limits (dict, default QCRAD_LIMITS) – Must have keys ‘dhi_ub’ and ‘dhi_lb’.
For ‘dhi_ub’ value is a dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For ‘dhi_lb’
value is a float.

Returns True where value passes limit test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.irradiance.check_dni_limits_qcrad

pvanalytics.quality.irradiance.check_dni_limits_qcrad(dni, solar_zenith, dni_extra,
limits=None)

Test for physical limits on DNI using the QCRad criteria.

Test is applied to each DNI value. A DNI value passes if value > lower bound and value < upper bound. Lower
bounds are constant for all tests. Upper bounds are calculated as

𝑢𝑏 = 𝑚𝑖𝑛+𝑚𝑢𝑙𝑡 * 𝑑𝑛𝑖_𝑒𝑥𝑡𝑟𝑎 * 𝑐𝑜𝑠(𝑠𝑜𝑙𝑎𝑟_𝑧𝑒𝑛𝑖𝑡ℎ)𝑒𝑥𝑝

Parameters

• dni (Series) – Direct normal irradiance in 𝑊/𝑚2

4 Chapter 1. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

• solar_zenith (Series) – Solar zenith angle in degrees

• dni_extra (Series) – Extraterrestrial normal irradiance in 𝑊/𝑚2

• limits (dict, default QCRAD_LIMITS) – Must have keys ‘dni_ub’ and ‘dni_lb’.
For ‘dni_ub’ value is a dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For ‘dni_lb’
value is a float.

Returns True where value passes limit test.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

All three checks can be combined into a single function call.

quality.irradiance.
check_irradiance_limits_qcrad(. . .)

Test for physical limits on GHI, DHI or DNI using the
QCRad criteria.

pvanalytics.quality.irradiance.check_irradiance_limits_qcrad

pvanalytics.quality.irradiance.check_irradiance_limits_qcrad(solar_zenith,
dni_extra,
ghi=None,
dhi=None,
dni=None, lim-
its=None)

Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Criteria from1 are used to determine physically plausible lower and upper bounds. Each value is tested and a
value passes if value > lower bound and value < upper bound. Lower bounds are constant for all tests. Upper
bounds are calculated as

𝑢𝑏 = 𝑚𝑖𝑛+𝑚𝑢𝑙𝑡 * 𝑑𝑛𝑖_𝑒𝑥𝑡𝑟𝑎 * 𝑐𝑜𝑠(𝑠𝑜𝑙𝑎𝑟_𝑧𝑒𝑛𝑖𝑡ℎ)𝑒𝑥𝑝

Note: If any of ghi, dhi, or dni are None, the corresponding element of the returned tuple will also be None.

Parameters

• solar_zenith (Series) – Solar zenith angle in degrees

• dni_extra (Series) – Extraterrestrial normal irradiance in 𝑊/𝑚2

• ghi (Series or None, default None) – Global horizontal irradiance in 𝑊/𝑚2

• dhi (Series or None, default None) – Diffuse horizontal irradiance in 𝑊/𝑚2

• dni (Series or None, default None) – Direct normal irradiance in 𝑊/𝑚2

1 C. N. Long and Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

1.1. API Reference 5

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

• limits (dict, default QCRAD_LIMITS) – for keys ‘ghi_ub’, ‘dhi_ub’, ‘dni_ub’,
value is a dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For keys ‘ghi_lb’, ‘dhi_lb’,
‘dni_lb’, value is a float.

Returns

• ghi_limit_flag (Series) – True for each value that is physically possible. None if ghi is
None.

• dhi_limit_flag (Series) – True for each value that is physically possible. None if dni is
None.

• dhi_limit_flag (Series) – True for each value that is physically possible. None if dhi is
None.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References

Irradiance measurements can also be checked for consistency.

quality.irradiance.
check_irradiance_consistency_qcrad(. . .)

Check consistency of GHI, DHI and DNI using QCRad
criteria.

pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad

pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad(ghi, so-
lar_zenith,
dhi, dni,
param=None)

Check consistency of GHI, DHI and DNI using QCRad criteria.

Uses criteria given in1 to validate the ratio of irradiance components.

Warning: Not valid for night time. While you can pass data from night time to this function, be aware that
the truth values returned for that data will not be valid.

Parameters

• ghi (Series) – Global horizontal irradiance in 𝑊/𝑚2

• solar_zenith (Series) – Solar zenith angle in degrees

• dhi (Series) – Diffuse horizontal irradiance in 𝑊/𝑚2

• dni (Series) – Direct normal irradiance in 𝑊/𝑚2

• param (dict) – keys are ‘ghi_ratio’ and ‘dhi_ratio’. For each key, value is a dict with
keys ‘high_zenith’ and ‘low_zenith’; for each of these keys, value is a dict with keys

1 C. N. Long and Y. Shi, An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.

6 Chapter 1. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

‘zenith_bounds’, ‘ghi_bounds’, and ‘ratio_bounds’ and value is an ordered pair [lower, up-
per] of float.

Returns

• consistent_components (Series) – True where ghi, dhi and dni components are consistent.

• diffuse_ratio_limit (Series) – True where diffuse to GHI ratio passes limit test.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References

GHI and POA irradiance can be validated against clearsky values to eliminate data that is unrealistically high.

quality.irradiance.
clearsky_limits(measured, . . .)

Identify irradiance values which do not exceed clearsky
values.

pvanalytics.quality.irradiance.clearsky_limits

pvanalytics.quality.irradiance.clearsky_limits(measured, clearsky, csi_max=1.1)
Identify irradiance values which do not exceed clearsky values.

Uses pvlib.irradiance.clearsky_index() to compute the clearsky index as the ratio of measured
to clearsky. Compares the clearsky index to csi_max to identify values in measured that are less than or equal
to csi_max.

Parameters

• measured (Series) – Measured irradiance in 𝑊/𝑚2.

• clearsky (Series) – Expected clearsky irradiance in 𝑊/𝑚2.

• csi_max (float, default 1.1) – Maximum ratio of measured to clearsky (clearsky
index).

Returns True for each value where the clearsky index is less than or equal to csi_max.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

Gaps

Identify gaps in the data.

1.1. API Reference 7

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

quality.gaps.interpolation_diff(x[, win-
dow, . . .])

Identify sequences which appear to be linear.

quality.gaps.stale_values_diff(x[, win-
dow, . . .])

Identify stale values in the data.

pvanalytics.quality.gaps.interpolation_diff

pvanalytics.quality.gaps.interpolation_diff(x, window=3, rtol=1e-05, atol=1e-08)
Identify sequences which appear to be linear.

Sequences are linear if the first difference appears to be constant. For a window of length N, the last value (index
N-1) is flagged if all values in the window appear to be a line segment.

Parameters

• x (Series) – data to be processed

• window (int, default 3) – number of sequential values that, if the first difference is
constant, are classified as a linear sequence

• rtol (float, default 1e-5) – tolerance relative to max(abs(x.diff()) for detecting
a change

• atol (float, default 1e-8) – absolute tolerance for detecting a change in first dif-
ference

Returns True for each value that is part of a linear sequence

Return type Series

Raises ValueError – If window < 3.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.gaps.stale_values_diff

pvanalytics.quality.gaps.stale_values_diff(x, window=3, rtol=1e-05, atol=1e-08)
Identify stale values in the data.

For a window of length N, the last value (index N-1) is considered stale if all values in the window are close to
the first value (index 0).

Parameters

• x (Series) – data to be processed

• window (int, default 3) – number of consecutive values which, if unchanged, indi-
cates stale data

• rtol (float, default 1e-5) – relative tolerance for detecting a change in data val-
ues

• atol (float, default 1e-8) – absolute tolerance for detecting a change in data
values

8 Chapter 1. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

• rtol and atol have the same meaning as in (Parameters) –

• numpy.allclose –

Returns True for each value that is part of a stale sequence of data

Return type Series

Raises ValueError – If window < 2.

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

The following functions identify days with incomplete data.

quality.gaps.completeness_score(series[,
. . .])

Calculate a data completeness score for each day.

quality.gaps.complete(series[, . . .]) Select data points that are part of days with complete
data.

pvanalytics.quality.gaps.completeness_score

pvanalytics.quality.gaps.completeness_score(series, freq=None, keep_index=True)
Calculate a data completeness score for each day.

The completeness score for a given day is the fraction of time in the day for which there is data (a value other
than NaN). The time duration attributed to each value is equal to the timestamp spacing of series, or freq if it is
specified. For example, a 24-hour time series with 30 minute timestamp spacing and 24 non-NaN values would
have data for a total of 12 hours and therefore a completeness score of 0.5.

Parameters

• series (Series) – A DatetimeIndexed series.

• freq (str, default None) – Interval between samples in the series as a pandas fre-
quency string. If None, the frequency is inferred using pandas.infer_freq().

• keep_index (boolean, default True) – Whether or not the returned series has
the same index as series. If False the returned series will be indexed by day.

Returns A series of floats giving the completeness score for each day (fraction of the day for which
series has data).

Return type Series

Raises ValueError – If freq is longer than the frequency inferred from series.

pvanalytics.quality.gaps.complete

pvanalytics.quality.gaps.complete(series, minimum_completeness=0.333, freq=None)
Select data points that are part of days with complete data.

A day has complete data if its completeness score is greater than or equal to minimum_completeness. The
completeness score is calculated by completeness_score().

1.1. API Reference 9

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

Parameters

• series (Series) – The data to be checked for completeness.

• minimum_completeness (float, default 0.333) – Fraction of the day that
must have data.

• freq (str, default None) – The expected frequency of the data in series. If none
then the frequency is inferred from the data.

Returns A series of booleans with True for each value that is part of a day with completeness greater
than minimum_completeness.

Return type Series

Raises ValueError – See completeness_score().

See also:

completeness_score()

Many data sets may have leading and trailing periods of days with sporadic or no data. The following functions can
be used to remove those periods.

quality.gaps.start_stop_dates(series[,
days])

Get the start and end of data excluding leading and trail-
ing gaps.

quality.gaps.trim(series[, days]) Mask the beginning and end of the data if not all True.
quality.gaps.trim_incomplete(series[, . . .]) Trim the series based on the completeness score.

pvanalytics.quality.gaps.start_stop_dates

pvanalytics.quality.gaps.start_stop_dates(series, days=10)
Get the start and end of data excluding leading and trailing gaps.

Parameters

• series (Series) – A DatetimeIndexed series of booleans.

• days (int, default 10) – The minimum number of consecutive days where every
value in series is True for data to start or stop.

Returns

• start (Datetime or None) – The first valid day. If there are no sufficiently long periods of
valid days then None is returned.

• stop (Datetime or None) – The last valid day. None if start is None.

pvanalytics.quality.gaps.trim

pvanalytics.quality.gaps.trim(series, days=10)
Mask the beginning and end of the data if not all True.

Parameters

• series (Series) – A DatetimeIndexed series of booleans

• days (int, default 10) – Minimum number of consecutive days that are all True for
‘good’ data to start.

10 Chapter 1. Contents

PVAnalytics

Returns A series of booleans with True for all data points between the first and last block of days
consecutive days that are all True in series. If series does not contain such a block of consecutive
True values, then the returned series will be entirely False.

Return type Series

See also:

start_stop_dates()

pvanalytics.quality.gaps.trim_incomplete

pvanalytics.quality.gaps.trim_incomplete(series, minimum_completeness=0.333333,
days=10, freq=None)

Trim the series based on the completeness score.

Combines completeness_score() and trim().

Parameters

• series (Series) – A DatetimeIndexed series.

• minimum_completeness (float, default 0.333333) – The minimum com-
pleteness score for each day.

• days (int, default 10) – The number of consecutive days with complete-
ness greater than minumum_completeness for the ‘good’ data to start or end. See
start_stop_dates() for more information.

• freq (str, default None) – The expected frequency of the series. See
completeness_score() fore more information.

Returns A series of booleans with the same index as series with False up to the first complete day,
True between the first and the last complete days, and False following the last complete day.

Return type Series

See also:

trim(), completeness_score()

Outliers

Functions for detecting outliers.

quality.outliers.tukey(data[, k]) Identify outliers based on the interquartile range.
quality.outliers.zscore(data[, zmax]) Identify outliers using the z-score.
quality.outliers.hampel(data[, window, . . .]) Identify outliers by the Hampel identifier.

pvanalytics.quality.outliers.tukey

pvanalytics.quality.outliers.tukey(data, k=1.5)
Identify outliers based on the interquartile range.

A value x is considered an outlier if it does not satisfy the following condition

𝑄1 − 𝑘(𝑄3 −𝑄1) ≤ 𝑥 ≤ 𝑄3 + 𝑘(𝑄3 −𝑄1)

where 𝑄1 is the value of the first quartile and 𝑄3 is the value of the third quartile.

1.1. API Reference 11

PVAnalytics

Parameters

• data (Series) – The data in which to find outliers.

• k (float, default 1.5) – Multiplier of the interquartile range. A larger value will be
more permissive of values that are far from the median.

Returns A series of booleans with True for each value that is an outlier.

Return type Series

pvanalytics.quality.outliers.zscore

pvanalytics.quality.outliers.zscore(data, zmax=1.5)
Identify outliers using the z-score.

Points with z-score greater than zmax are considered as outliers.

Parameters

• data (Series) – A series of numeric values in which to find outliers.

• zmax (float) – Upper limit of the absolute values of the z-score.

Returns A series of booleans with True for each value that is an outlier.

Return type Series

pvanalytics.quality.outliers.hampel

pvanalytics.quality.outliers.hampel(data, window=5, max_deviation=3.0, scale=1.4826)
Identify outliers by the Hampel identifier.

The Hampel identifier is computed according to1.

Parameters

• data (Series) – The data in which to find outliers.

• window (int or offset, default 5) – The size of the rolling window used to
compute the Hampel identifier.

• max_deviation (float, default 3.0) – Any value with a Hampel identifier >
max_deviation standard deviations from the median is considered an outlier.

• scale (float, default 1.4826) – MAD scale estimate. The standard deviation is
calculated as 𝑠𝑐𝑎𝑙𝑒 * 𝑀𝐴𝐷. The default gives an estimate for the standard deviation of
Gaussian distributed data.

Returns True for each value that is an outlier according to its Hampel identifier.

Return type Series

References

Time

Quality control related to time. This includes things like time-stamp spacing, time-shifts, and time zone validation.

1 Pearson, R.K., Neuvo, Y., Astola, J. et al. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 87 (2016). https://doi.org/10.
1186/s13634-016-0383-6

12 Chapter 1. Contents

https://doi.org/10.1186/s13634-016-0383-6
https://doi.org/10.1186/s13634-016-0383-6

PVAnalytics

quality.time.spacing(times, freq) Check that the spacing between times conforms to freq.

pvanalytics.quality.time.spacing

pvanalytics.quality.time.spacing(times, freq)
Check that the spacing between times conforms to freq.

Parameters

• times (DatetimeIndex) –

• freq (string or Timedelta) – Expected frequency of times.

Returns True when the difference between one time and the time before it conforms to freq.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

Weather

Quality checks for weather data.

quality.weather.
relative_humidity_limits(. . .)

Identify relative humidity values that are within limits.

quality.weather.
temperature_limits(. . . [, limits])

Identify temperature values that are within limits.

quality.weather.wind_limits(wind_speed[,
limits])

Identify wind speed values that are within limits.

pvanalytics.quality.weather.relative_humidity_limits

pvanalytics.quality.weather.relative_humidity_limits(relative_humidity, limits=(0,
100))

Identify relative humidity values that are within limits.

Parameters

• relative_humidity (Series) – Relative humidity in %.

• limits (tuple, default (0, 100)) – (lower bound, upper bound) for relative hu-
midity.

Returns True if relative_humidity >= lower bound and relative_humidity <= upper_bound.

Return type Series

1.1. API Reference 13

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.weather.temperature_limits

pvanalytics.quality.weather.temperature_limits(air_temperature, limits=(-35.0, 50.0))
Identify temperature values that are within limits.

Parameters

• air_temperature (Series) – Air temperature [C].

• temp_limits (tuple, default (-35, 50)) – (lower bound, upper bound) for
temperature.

Returns True if air_temperature > lower bound and air_temperature < upper bound.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

pvanalytics.quality.weather.wind_limits

pvanalytics.quality.weather.wind_limits(wind_speed, limits=(0.0, 50.0))
Identify wind speed values that are within limits.

Parameters

• wind_speed (Series) – Wind speed in 𝑚/𝑠

• wind_limits (tuple, default (0, 50)) – (lower bound, upper bound) for wind
speed.

Returns True if wind_speed >= lower bound and wind_speed < upper bound.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

1.1.2 Features

Functions for detecting features in the data.

14 Chapter 1. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

Clipping

Functions for identifying inverter clipping

features.clipping.levels(ac_power[, win-
dow, . . .])

Label clipping in AC power data based on levels in the
data.

pvanalytics.features.clipping.levels

pvanalytics.features.clipping.levels(ac_power, window=4, fraction_in_window=0.75,
rtol=0.005, levels=2)

Label clipping in AC power data based on levels in the data.

Parameters

• ac_power (Series) – Time series of AC power measurements.

• window (int, default 4) – Number of data points in a window used to detect clip-
ping.

• fraction_in_window (float, default 0.75) – Fraction of points which indi-
cate clipping if AC power at each point is close to the plateau level.

• rtol (float, default 5e-3) – A point is close to a clipped level M if abs(ac_power
- M) < rtol * max(ac_power)

• levels (int, default 2) – Number of clipped power levels to consider.

Returns True when clipping is indicated.

Return type Series

Notes

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

Clearsky

features.clearsky.reno(ghi, ghi_clearsky) Identify times when GHI is consistent with clearsky
conditions.

pvanalytics.features.clearsky.reno

pvanalytics.features.clearsky.reno(ghi, ghi_clearsky)
Identify times when GHI is consistent with clearsky conditions.

Uses the function pvlib.clearsky.detect_clearsky().

Note: Must be given GHI data with regular (constant) time intervals of 15 minutes or less.

Parameters

1.1. API Reference 15

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

• ghi (Series) – Global horizontal irradiance in 𝑊/𝑚2. Must have an index with time
intervals of at most 15 minutes.

• ghi_clearsky (Series) – Global horizontal irradiance in 𝑊/𝑚2 under clearsky con-
ditions.

Returns True when clear sky conditions are indicated.

Return type Series

Raises ValueError – if the time intervals are greater than 15 minutes.

Notes

Clear-sky conditions are inferred when each of six criteria are met; see pvlib.clearsky.
detect_clearsky() for references and details. Threshold values for each criterion were originally de-
veloped for ten minute windows containing one-minute data1. As indicated in2, the algorithm also works for
longer windows and data at different intervals if threshold criteria are roughly scaled to the window length.
Here, the threshold values are based on [1] with the scaling indicated in [2].

Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the
top level directory of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/
SOLARFORECASTARBITER_LICENSE for more information.

References

Time

The following functions can be used to differentiate night-time and day-time based on power or irradiance data. This
is useful if you do not know the timezone of the index for your data or for verifying that the timezone is correct.
Both functions identify the same feature, but in slightly different ways. features.daylight.frequency() is
useful if your data has substantial outliers or other excessively large values; however, it may fail if substantial portions
of the night-time data is greater than 0. features.daylight.level() can handle positive night-time data (so
long as night-time values are substantially lower than day-time data) but may be more suceptible to large outliers.

features.daylight.
frequency(power_or_irradiance)

Identify daytime periods based on frequency of positive
data.

features.daylight.
level(power_or_irradiance)

Identify daytime periods based on a minimum
power/irradiance threshold.

pvanalytics.features.daylight.frequency

pvanalytics.features.daylight.frequency(power_or_irradiance, threshold=0.8, mini-
mum_days=60)

Identify daytime periods based on frequency of positive data.

Data is aggregated by minute of the day and the mean number of positive values for each minute is calculated.
Each minute with at least threshold times the mean number of positive values is considered day-time.

Parameters
1 Reno, M.J. and C.W. Hansen, “Identification of periods of clear sky irradiance in time series of GHI measurements” Renewable Energy, v90,

p. 520-531, 2016.
2 B. H. Ellis, M. Deceglie and A. Jain, “Automatic Detection of Clear-Sky Periods From Irradiance Data,” in IEEE Journal of Photovoltaics, vol.

9, no. 4, pp. 998-1005, July 2019. doi: 10.1109/JPHOTOV.2019.2914444

16 Chapter 1. Contents

https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE

PVAnalytics

• power_or_irradiance (Series) – DatetimeIndexed series of power or irradiance
measurements.

• threshold (float, default 0.8) – Fraction of data that must have positive power
or irradiance measurements for a time to be considered “day”.

• minimum_days (int, default 60) – Minimum number of days with data. If
power_or_irradiance has fewer days with positive data then a ValueError is raised.

Returns A DatetimeIndexed series with True for each index that is during daylight hours.

Return type Series

Raises ValueError – if there are less than minimum_days of positive data.

Notes

This function is derived from the pvfleets_qa_analysis project. Copyright (c) 2020 Alliance for Susteainable
Energy, LLC.

pvanalytics.features.daylight.level

pvanalytics.features.daylight.level(power_or_irradiance, threshold=0.2, quantile=0.95)
Identify daytime periods based on a minimum power/irradiance threshold.

Power or irradiance data is aggregated by minute of day and the mean is computed at each minute. A minute
is marked as daytime when the mean value is greater than or equal to threshold times the quantile-percent of
power_or_irradiance.

Parameters

• power_or_irradiance (Series) – DatetimeIndexed power or irradiance data.

• threshold (float, default 0.2) – Mean power at each minute of the day must be
greater than or equal to threshold * max where max is the quantile-percent quantile of the
data for the minute to be considered daytime.

• quantile (float, default 0.95) – Quantile to use as the upper bound of the data.

Returns A series of booleans with True for timestamps when the sun is up.

Return type Series

References

1.1. API Reference 17

PVAnalytics

18 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

19

PVAnalytics

20 Chapter 2. Indices and tables

INDEX

C
check_dhi_limits_qcrad() (in module pvanalyt-

ics.quality.irradiance), 4
check_dni_limits_qcrad() (in module pvanalyt-

ics.quality.irradiance), 4
check_ghi_limits_qcrad() (in module pvanalyt-

ics.quality.irradiance), 3
check_irradiance_consistency_qcrad() (in

module pvanalytics.quality.irradiance), 6
check_irradiance_limits_qcrad() (in mod-

ule pvanalytics.quality.irradiance), 5
clearsky_limits() (in module pvanalyt-

ics.quality.irradiance), 7
complete() (in module pvanalytics.quality.gaps), 9
completeness_score() (in module pvanalyt-

ics.quality.gaps), 9

F
frequency() (in module pvanalyt-

ics.features.daylight), 16

H
hampel() (in module pvanalytics.quality.outliers), 12

I
interpolation_diff() (in module pvanalyt-

ics.quality.gaps), 8

L
level() (in module pvanalytics.features.daylight), 17
levels() (in module pvanalytics.features.clipping), 15

R
relative_humidity_limits() (in module pvan-

alytics.quality.weather), 13
reno() (in module pvanalytics.features.clearsky), 15

S
spacing() (in module pvanalytics.quality.time), 13
stale_values_diff() (in module pvanalyt-

ics.quality.gaps), 8

start_stop_dates() (in module pvanalyt-
ics.quality.gaps), 10

T
temperature_limits() (in module pvanalyt-

ics.quality.weather), 14
trim() (in module pvanalytics.quality.gaps), 10
trim_incomplete() (in module pvanalyt-

ics.quality.gaps), 11
tukey() (in module pvanalytics.quality.outliers), 11

W
wind_limits() (in module pvanalyt-

ics.quality.weather), 14

Z
zscore() (in module pvanalytics.quality.outliers), 12

21

	Contents
	API Reference

	Indices and tables
	Index

