

    
      
          
            
  
PVAnalytics

PVAnalytics is a python library that supports analytics for PV
systems. It provides functions for quality control, filtering, and
feature labeling and other tools supporting the analysis of PV
system-level data.

The source code for PVAnalytics is hosted on github [https://github.com/pvlib/pvanalytics].




Contents


Contents:


	API Reference
	Quality

	Features












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
API Reference


Quality


Irradiance

The check_*_limits_qcrad functions use the QCRad algorithm 1 to
identify irradiance measurements that are beyond physical limits.







	quality.irradiance.check_ghi_limits_qcrad(…)

	Test for physical limits on GHI using the QCRad criteria.



	quality.irradiance.check_dhi_limits_qcrad(…)

	Test for physical limits on DHI using the QCRad criteria.



	quality.irradiance.check_dni_limits_qcrad(…)

	Test for physical limits on DNI using the QCRad criteria.






All three checks can be combined into a single function call.







	quality.irradiance.check_irradiance_limits_qcrad(…)

	Test for physical limits on GHI, DHI or DNI using the QCRad criteria.






Irradiance measurements can also be checked for consistency.







	quality.irradiance.check_irradiance_consistency_qcrad(…)

	Check consistency of GHI, DHI and DNI using QCRad criteria.






GHI and POA irradiance can be validated against clearsky values to
eliminate data that is unrealistically high.







	quality.irradiance.clearsky_limits(measured, …)

	Identify irradiance values which do not exceed clearsky values.









Gaps

Identify gaps in the data.







	quality.gaps.interpolation_diff(x[, window, …])

	Identify sequences which appear to be linear.



	quality.gaps.stale_values_diff(x[, window, …])

	Identify stale values in the data.






The following functions identify days with incomplete data.







	quality.gaps.completeness_score(series[, …])

	Calculate a data completeness score for each day.



	quality.gaps.complete(series[, …])

	Select data points that are part of days with complete data.






Many data sets may have leading and trailing periods of days with sporadic or
no data. The following functions can be used to remove those periods.







	quality.gaps.start_stop_dates(series[, days])

	Get the start and end of data excluding leading and trailing gaps.



	quality.gaps.trim(series[, days])

	Mask the beginning and end of the data if not all True.



	quality.gaps.trim_incomplete(series[, …])

	Trim the series based on the completeness score.









Outliers

Functions for detecting outliers.







	quality.outliers.tukey(data[, k])

	Identify outliers based on the interquartile range.



	quality.outliers.zscore(data[, zmax])

	Identify outliers using the z-score.



	quality.outliers.hampel(data[, window, …])

	Identify outliers by the Hampel identifier.









Time

Quality control related to time. This includes things like time-stamp
spacing, time-shifts, and time zone validation.







	quality.time.spacing(times, freq)

	Check that the spacing between times conforms to freq.









Weather

Quality checks for weather data.







	quality.weather.relative_humidity_limits(…)

	Identify relative humidity values that are within limits.



	quality.weather.temperature_limits(…[, limits])

	Identify temperature values that are within limits.



	quality.weather.wind_limits(wind_speed[, limits])

	Identify wind speed values that are within limits.











Features

Functions for detecting features in the data.


Clipping

Functions for identifying inverter clipping







	features.clipping.levels(ac_power[, window, …])

	Label clipping in AC power data based on levels in the data.









Clearsky







	features.clearsky.reno(ghi, ghi_clearsky)

	Identify times when GHI is consistent with clearsky conditions.









Time

The following functions can be used to differentiate night-time and
day-time based on power or irradiance data. This is useful if you do
not know the timezone of the index for your data or for verifying
that the timezone is correct. Both functions identify the same
feature, but in slightly different ways.
features.daylight.frequency() is useful if your data has
substantial outliers or other excessively large values; however, it
may fail if substantial portions of the night-time data is greater
than 0. features.daylight.level() can handle positive
night-time data (so long as night-time values are substantially lower than
day-time data) but may be more suceptible to large outliers.







	features.daylight.frequency(power_or_irradiance)

	Identify daytime periods based on frequency of positive data.



	features.daylight.level(power_or_irradiance)

	Identify daytime periods based on a minimum power/irradiance threshold.






References


	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.check_ghi_limits_qcrad


	
pvanalytics.quality.irradiance.check_ghi_limits_qcrad(ghi, solar_zenith, dni_extra, limits=None)

	Test for physical limits on GHI using the QCRad criteria.

Test is applied to each GHI value. A GHI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as


\[ub = min + mult * dni\_extra * cos( solar\_zenith)^{exp}\]


	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\)


	solar_zenith (Series) – Solar zenith angle in degrees


	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)


	limits (dict, default QCRAD_LIMITS) – Must have keys ‘ghi_ub’ and ‘ghi_lb’. For ‘ghi_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘ghi_lb’ value is a float.






	Returns

	True where value passes limits test.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.check_dhi_limits_qcrad


	
pvanalytics.quality.irradiance.check_dhi_limits_qcrad(dhi, solar_zenith, dni_extra, limits=None)

	Test for physical limits on DHI using the QCRad criteria.

Test is applied to each DHI value. A DHI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as


\[ub = min + mult * dni\_extra * cos( solar\_zenith)^{exp}\]


	Parameters

	
	dhi (Series) – Diffuse horizontal irradiance in \(W/m^2\)


	solar_zenith (Series) – Solar zenith angle in degrees


	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)


	limits (dict, default QCRAD_LIMITS) – Must have keys ‘dhi_ub’ and ‘dhi_lb’. For ‘dhi_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘dhi_lb’ value is a float.






	Returns

	True where value passes limit test.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.check_dni_limits_qcrad


	
pvanalytics.quality.irradiance.check_dni_limits_qcrad(dni, solar_zenith, dni_extra, limits=None)

	Test for physical limits on DNI using the QCRad criteria.

Test is applied to each DNI value. A DNI value passes if value >
lower bound and value < upper bound. Lower bounds are constant for
all tests. Upper bounds are calculated as


\[ub = min + mult * dni\_extra * cos( solar\_zenith)^{exp}\]


	Parameters

	
	dni (Series) – Direct normal irradiance in \(W/m^2\)


	solar_zenith (Series) – Solar zenith angle in degrees


	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)


	limits (dict, default QCRAD_LIMITS) – Must have keys ‘dni_ub’ and ‘dni_lb’. For ‘dni_ub’ value is a
dict with keys {‘mult’, ‘exp’, ‘min’} and float values. For
‘dni_lb’ value is a float.






	Returns

	True where value passes limit test.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.check_irradiance_limits_qcrad


	
pvanalytics.quality.irradiance.check_irradiance_limits_qcrad(solar_zenith, dni_extra, ghi=None, dhi=None, dni=None, limits=None)

	Test for physical limits on GHI, DHI or DNI using the QCRad criteria.

Criteria from 1 are used to determine physically plausible
lower and upper bounds. Each value is tested and a value passes if
value > lower bound and value < upper bound. Lower bounds are
constant for all tests. Upper bounds are calculated as


\[ub = min + mult * dni\_extra * cos( solar\_zenith)^{exp}\]


Note

If any of ghi, dhi, or dni are None, the
corresponding element of the returned tuple will also be None.




	Parameters

	
	solar_zenith (Series) – Solar zenith angle in degrees


	dni_extra (Series) – Extraterrestrial normal irradiance in \(W/m^2\)


	ghi (Series or None, default None) – Global horizontal irradiance in \(W/m^2\)


	dhi (Series or None, default None) – Diffuse horizontal irradiance in \(W/m^2\)


	dni (Series or None, default None) – Direct normal irradiance in \(W/m^2\)


	limits (dict, default QCRAD_LIMITS) – for keys ‘ghi_ub’, ‘dhi_ub’, ‘dni_ub’, value is a dict with
keys {‘mult’, ‘exp’, ‘min’} and float values. For keys
‘ghi_lb’, ‘dhi_lb’, ‘dni_lb’, value is a float.






	Returns

	
	ghi_limit_flag (Series) – True for each value that is physically possible. None if ghi is None.


	dhi_limit_flag (Series) – True for each value that is physically possible. None if dni is None.


	dhi_limit_flag (Series) – True for each value that is physically possible. None if dhi is None.










Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References


	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad


	
pvanalytics.quality.irradiance.check_irradiance_consistency_qcrad(ghi, solar_zenith, dhi, dni, param=None)

	Check consistency of GHI, DHI and DNI using QCRad criteria.

Uses criteria given in 1 to validate the ratio of irradiance
components.


Warning

Not valid for night time. While you can pass data
from night time to this function, be aware that the truth
values returned for that data will not be valid.




	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\)


	solar_zenith (Series) – Solar zenith angle in degrees


	dhi (Series) – Diffuse horizontal irradiance in \(W/m^2\)


	dni (Series) – Direct normal irradiance in \(W/m^2\)


	param (dict) – keys are ‘ghi_ratio’ and ‘dhi_ratio’. For each key, value is a dict
with keys ‘high_zenith’ and ‘low_zenith’; for each of these keys,
value is a dict with keys ‘zenith_bounds’, ‘ghi_bounds’, and
‘ratio_bounds’ and value is an ordered pair [lower, upper]
of float.






	Returns

	
	consistent_components (Series) – True where ghi, dhi and dni components are consistent.


	diffuse_ratio_limit (Series) – True where diffuse to GHI ratio passes limit test.










Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References


	1

	C. N. Long and Y. Shi, An Automated Quality Assessment and Control
Algorithm for Surface Radiation Measurements, The Open Atmospheric
Science Journal 2, pp. 23-37, 2008.













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.irradiance.clearsky_limits


	
pvanalytics.quality.irradiance.clearsky_limits(measured, clearsky, csi_max=1.1)

	Identify irradiance values which do not exceed clearsky values.

Uses pvlib.irradiance.clearsky_index() to compute the
clearsky index as the ratio of measured to clearsky. Compares the
clearsky index to csi_max to identify values in measured that
are less than or equal to csi_max.


	Parameters

	
	measured (Series) – Measured irradiance in \(W/m^2\).


	clearsky (Series) – Expected clearsky irradiance in \(W/m^2\).


	csi_max (float, default 1.1) – Maximum ratio of measured to clearsky (clearsky index).






	Returns

	True for each value where the clearsky index is less than or
equal to csi_max.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.interpolation_diff


	
pvanalytics.quality.gaps.interpolation_diff(x, window=3, rtol=1e-05, atol=1e-08)

	Identify sequences which appear to be linear.

Sequences are linear if the first difference appears to be
constant.  For a window of length N, the last value (index N-1) is
flagged if all values in the window appear to be a line segment.


	Parameters

	
	x (Series) – data to be processed


	window (int, default 3) – number of sequential values that, if the first difference is
constant, are classified as a linear sequence


	rtol (float, default 1e-5) – tolerance relative to max(abs(x.diff()) for detecting a change


	atol (float, default 1e-8) – absolute tolerance for detecting a change in first difference






	Returns

	True for each value that is part of a linear sequence



	Return type

	Series



	Raises

	ValueError – If window < 3.





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.stale_values_diff


	
pvanalytics.quality.gaps.stale_values_diff(x, window=3, rtol=1e-05, atol=1e-08)

	Identify stale values in the data.

For a window of length N, the last value (index N-1) is considered
stale if all values in the window are close to the first value
(index 0).


	Parameters

	
	x (Series) – data to be processed


	window (int, default 3) – number of consecutive values which, if unchanged, indicates
stale data


	rtol (float, default 1e-5) – relative tolerance for detecting a change in data values


	atol (float, default 1e-8) – absolute tolerance for detecting a change in data values


	rtol and atol have the same meaning as in (Parameters) – 


	numpy.allclose – 






	Returns

	True for each value that is part of a stale sequence of data



	Return type

	Series



	Raises

	ValueError – If window < 2.





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.completeness_score


	
pvanalytics.quality.gaps.completeness_score(series, freq=None, keep_index=True)

	Calculate a data completeness score for each day.

The completeness score for a given day is the fraction of time in
the day for which there is data (a value other than NaN). The time
duration attributed to each value is equal to the timestamp
spacing of series, or freq if it is specified. For example, a
24-hour time series with 30 minute timestamp spacing and 24
non-NaN values would have data for a total of 12 hours and
therefore a completeness score of 0.5.


	Parameters

	
	series (Series) – A DatetimeIndexed series.


	freq (str, default None) – Interval between samples in the series as a pandas frequency
string. If None, the frequency is inferred using
pandas.infer_freq().


	keep_index (boolean, default True) – Whether or not the returned series has the same index as
series. If False the returned series will be indexed by day.






	Returns

	A series of floats giving the completeness score for each day
(fraction of the day for which series has data).



	Return type

	Series



	Raises

	ValueError – If freq is longer than the frequency inferred from series.













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.complete


	
pvanalytics.quality.gaps.complete(series, minimum_completeness=0.333, freq=None)

	Select data points that are part of days with complete data.

A day has complete data if its completeness score is greater than
or equal to minimum_completeness. The completeness score is
calculated by completeness_score().


	Parameters

	
	series (Series) – The data to be checked for completeness.


	minimum_completeness (float, default 0.333) – Fraction of the day that must have data.


	freq (str, default None) – The expected frequency of the data in series. If none then
the frequency is inferred from the data.






	Returns

	A series of booleans with True for each value that is part of
a day with completeness greater than minimum_completeness.



	Return type

	Series



	Raises

	ValueError – See completeness_score().






See also

completeness_score()











          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.start_stop_dates


	
pvanalytics.quality.gaps.start_stop_dates(series, days=10)

	Get the start and end of data excluding leading and trailing gaps.


	Parameters

	
	series (Series) – A DatetimeIndexed series of booleans.


	days (int, default 10) – The minimum number of consecutive days where every value in
series is True for data to start or stop.






	Returns

	
	start (Datetime or None) – The first valid day. If there are no sufficiently long periods
of valid days then None is returned.


	stop (Datetime or None) – The last valid day. None if start is None.


















          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.trim


	
pvanalytics.quality.gaps.trim(series, days=10)

	Mask the beginning and end of the data if not all True.


	Parameters

	
	series (Series) – A DatetimeIndexed series of booleans


	days (int, default 10) – Minimum number of consecutive days that are all True for
‘good’ data to start.






	Returns

	A series of booleans with True for all data points between the
first and last block of days consecutive days that are all
True in series. If series does not contain such a block of
consecutive True values, then the returned series will be
entirely False.



	Return type

	Series






See also

start_stop_dates()











          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.gaps.trim_incomplete


	
pvanalytics.quality.gaps.trim_incomplete(series, minimum_completeness=0.333333, days=10, freq=None)

	Trim the series based on the completeness score.

Combines completeness_score() and trim().


	Parameters

	
	series (Series) – A DatetimeIndexed series.


	minimum_completeness (float, default 0.333333) – The minimum completeness score for each day.


	days (int, default 10) – The number of consecutive days with completeness greater than
minumum_completeness for the ‘good’ data to start or
end. See start_stop_dates() for more information.


	freq (str, default None) – The expected frequency of the series. See
completeness_score() fore more information.






	Returns

	A series of booleans with the same index as series with
False up to the first complete day, True between the first and
the last complete days, and False following the last complete
day.



	Return type

	Series






See also

trim(), completeness_score()











          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.outliers.tukey


	
pvanalytics.quality.outliers.tukey(data, k=1.5)

	Identify outliers based on the interquartile range.

A value x is considered an outlier if it does not satisfy the
following condition


\[Q_1 - k(Q_3 - Q_1) \le x \le Q_3 + k(Q_3 - Q_1)\]

where \(Q_1\) is the value of the first quartile and
\(Q_3\) is the value of the third quartile.


	Parameters

	
	data (Series) – The data in which to find outliers.


	k (float, default 1.5) – Multiplier of the interquartile range. A larger value will be more
permissive of values that are far from the median.






	Returns

	A series of booleans with True for each value that is an
outlier.



	Return type

	Series













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.outliers.zscore


	
pvanalytics.quality.outliers.zscore(data, zmax=1.5)

	Identify outliers using the z-score.

Points with z-score greater than zmax are considered as outliers.


	Parameters

	
	data (Series) – A series of numeric values in which to find outliers.


	zmax (float) – Upper limit of the absolute values of the z-score.






	Returns

	A series of booleans with True for each value that is an
outlier.



	Return type

	Series













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.outliers.hampel


	
pvanalytics.quality.outliers.hampel(data, window=5, max_deviation=3.0, scale=1.4826)

	Identify outliers by the Hampel identifier.

The Hampel identifier is computed according to 1.


	Parameters

	
	data (Series) – The data in which to find outliers.


	window (int or offset, default 5) – The size of the rolling window used to compute the Hampel
identifier.


	max_deviation (float, default 3.0) – Any value with a Hampel identifier > max_deviation standard
deviations from the median is considered an outlier.


	scale (float, default 1.4826) – MAD scale estimate. The standard deviation is calculated as
\(scale * MAD\). The default gives an estimate for the
standard deviation of Gaussian distributed data.






	Returns

	True for each value that is an outlier according to its Hampel
identifier.



	Return type

	Series





References


	1

	Pearson, R.K., Neuvo, Y., Astola, J. et al. Generalized
Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 87
(2016). https://doi.org/10.1186/s13634-016-0383-6













          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.time.spacing


	
pvanalytics.quality.time.spacing(times, freq)

	Check that the spacing between times conforms to freq.


	Parameters

	
	times (DatetimeIndex) – 


	freq (string or Timedelta) – Expected frequency of times.






	Returns

	True when the difference between one time and the time before
it conforms to freq.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.weather.relative_humidity_limits


	
pvanalytics.quality.weather.relative_humidity_limits(relative_humidity, limits=(0, 100))

	Identify relative humidity values that are within limits.


	Parameters

	
	relative_humidity (Series) – Relative humidity in %.


	limits (tuple, default (0, 100)) – (lower bound, upper bound) for relative humidity.






	Returns

	True if relative_humidity >= lower bound and
relative_humidity <= upper_bound.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.weather.temperature_limits


	
pvanalytics.quality.weather.temperature_limits(air_temperature, limits=(-35.0, 50.0))

	Identify temperature values that are within limits.


	Parameters

	
	air_temperature (Series) – Air temperature [C].


	temp_limits (tuple, default (-35, 50)) – (lower bound, upper bound) for temperature.






	Returns

	True if air_temperature > lower bound and air_temperature
< upper bound.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.quality.weather.wind_limits


	
pvanalytics.quality.weather.wind_limits(wind_speed, limits=(0.0, 50.0))

	Identify wind speed values that are within limits.


	Parameters

	
	wind_speed (Series) – Wind speed in \(m/s\)


	wind_limits (tuple, default (0, 50)) – (lower bound, upper bound) for wind speed.






	Returns

	True if wind_speed >= lower bound and wind_speed < upper
bound.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.features.clipping.levels


	
pvanalytics.features.clipping.levels(ac_power, window=4, fraction_in_window=0.75, rtol=0.005, levels=2)

	Label clipping in AC power data based on levels in the data.


	Parameters

	
	ac_power (Series) – Time series of AC power measurements.


	window (int, default 4) – Number of data points in a window used to detect clipping.


	fraction_in_window (float, default 0.75) – Fraction of points which indicate clipping if AC power at each
point is close to the plateau level.


	rtol (float, default 5e-3) – A point is close to a clipped level M if
abs(ac_power - M) < rtol * max(ac_power)


	levels (int, default 2) – Number of clipped power levels to consider.






	Returns

	True when clipping is indicated.



	Return type

	Series





Notes

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.









          

      

      

    

  

    
      
          
            
  
pvanalytics.features.clearsky.reno


	
pvanalytics.features.clearsky.reno(ghi, ghi_clearsky)

	Identify times when GHI is consistent with clearsky conditions.

Uses the function pvlib.clearsky.detect_clearsky().


Note

Must be given GHI data with regular (constant) time intervals
of 15 minutes or less.




	Parameters

	
	ghi (Series) – Global horizontal irradiance in \(W/m^2\). Must have an
index with time intervals of at most 15 minutes.


	ghi_clearsky (Series) – Global horizontal irradiance in \(W/m^2\) under clearsky
conditions.






	Returns

	True when clear sky conditions are indicated.



	Return type

	Series



	Raises

	ValueError – if the time intervals are greater than 15 minutes.





Notes

Clear-sky conditions are inferred when each of six criteria are
met; see pvlib.clearsky.detect_clearsky() for references
and details. Threshold values for each criterion were originally
developed for ten minute windows containing one-minute data
1. As indicated in 2, the algorithm also works for longer
windows and data at different intervals if threshold criteria are
roughly scaled to the window length. Here, the threshold values
are based on [1] with the scaling indicated in [2].

Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at https://github.com/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE
for more information.

References


	1

	Reno, M.J. and C.W. Hansen, “Identification of periods of
clear sky irradiance in time series of GHI measurements”
Renewable Energy, v90, p. 520-531, 2016.



	2

	B. H. Ellis, M. Deceglie and A. Jain, “Automatic Detection
of Clear-Sky Periods From Irradiance Data,” in IEEE Journal of
Photovoltaics, vol. 9, no. 4, pp. 998-1005, July 2019. doi:
10.1109/JPHOTOV.2019.2914444













          

      

      

    

  

    
      
          
            
  
pvanalytics.features.daylight.frequency


	
pvanalytics.features.daylight.frequency(power_or_irradiance, threshold=0.8, minimum_days=60)

	Identify daytime periods based on frequency of positive data.

Data is aggregated by minute of the day and the mean number of
positive values for each minute is calculated. Each minute with at
least threshold times the mean number of positive values is
considered day-time.


	Parameters

	
	power_or_irradiance (Series) – DatetimeIndexed series of power or irradiance measurements.


	threshold (float, default 0.8) – Fraction of data that must have positive power or irradiance
measurements for a time to be considered “day”.


	minimum_days (int, default 60) – Minimum number of days with data. If power_or_irradiance has
fewer days with positive data then a ValueError is raised.






	Returns

	A DatetimeIndexed series with True for each index that is
during daylight hours.



	Return type

	Series



	Raises

	ValueError – if there are less than minimum_days of positive data.





Notes

This function is derived from the pvfleets_qa_analysis
project. Copyright (c) 2020 Alliance for Susteainable Energy, LLC.









          

      

      

    

  

    
      
          
            
  
pvanalytics.features.daylight.level


	
pvanalytics.features.daylight.level(power_or_irradiance, threshold=0.2, quantile=0.95)

	Identify daytime periods based on a minimum power/irradiance threshold.

Power or irradiance data is aggregated by minute of day and the
mean is computed at each minute. A minute is marked as daytime
when the mean value is greater than or equal to threshold times
the quantile-percent of power_or_irradiance.


	Parameters

	
	power_or_irradiance (Series) – DatetimeIndexed power or irradiance data.


	threshold (float, default 0.2) – Mean power at each minute of the day must be greater than or
equal to threshold * max where max is the quantile-percent
quantile of the data for the minute to be considered daytime.


	quantile (float, default 0.95) – Quantile to use as the upper bound of the data.






	Returns

	A series of booleans with True for timestamps when the sun is
up.



	Return type

	Series













          

      

      

    

  

    
      
          
            

Index



 C
 | F
 | H
 | I
 | L
 | R
 | S
 | T
 | W
 | Z
 


C


  	
      	check_dhi_limits_qcrad() (in module pvanalytics.quality.irradiance)


      	check_dni_limits_qcrad() (in module pvanalytics.quality.irradiance)


      	check_ghi_limits_qcrad() (in module pvanalytics.quality.irradiance)


      	check_irradiance_consistency_qcrad() (in module pvanalytics.quality.irradiance)


  

  	
      	check_irradiance_limits_qcrad() (in module pvanalytics.quality.irradiance)


      	clearsky_limits() (in module pvanalytics.quality.irradiance)


      	complete() (in module pvanalytics.quality.gaps)


      	completeness_score() (in module pvanalytics.quality.gaps)


  





F


  	
      	frequency() (in module pvanalytics.features.daylight)


  





H


  	
      	hampel() (in module pvanalytics.quality.outliers)


  





I


  	
      	interpolation_diff() (in module pvanalytics.quality.gaps)


  





L


  	
      	level() (in module pvanalytics.features.daylight)


  

  	
      	levels() (in module pvanalytics.features.clipping)


  





R


  	
      	relative_humidity_limits() (in module pvanalytics.quality.weather)


  

  	
      	reno() (in module pvanalytics.features.clearsky)


  





S


  	
      	spacing() (in module pvanalytics.quality.time)


  

  	
      	stale_values_diff() (in module pvanalytics.quality.gaps)


      	start_stop_dates() (in module pvanalytics.quality.gaps)


  





T


  	
      	temperature_limits() (in module pvanalytics.quality.weather)


      	trim() (in module pvanalytics.quality.gaps)


  

  	
      	trim_incomplete() (in module pvanalytics.quality.gaps)


      	tukey() (in module pvanalytics.quality.outliers)


  





W


  	
      	wind_limits() (in module pvanalytics.quality.weather)


  





Z


  	
      	zscore() (in module pvanalytics.quality.outliers)


  







          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          PVAnalytics
        


        		
          API Reference
          
            		
              Quality
              
                		
                  Irradiance
                


                		
                  Gaps
                


                		
                  Outliers
                


                		
                  Time
                


                		
                  Weather
                


              


            


            		
              Features
              
                		
                  Clipping
                


                		
                  Clearsky
                


                		
                  Time
                


              


            


          


        


      


    
  

